j05hr3d commited on
Commit
62d090d
·
verified ·
1 Parent(s): 060c18b

Model save

Browse files
Files changed (3) hide show
  1. README.md +52 -182
  2. adapter_model.safetensors +1 -1
  3. trainer_state.json +224 -11
README.md CHANGED
@@ -1,207 +1,77 @@
1
  ---
2
- base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
3
  library_name: peft
4
- pipeline_tag: text-generation
 
5
  tags:
6
  - base_model:adapter:Qwen/Qwen3-Coder-30B-A3B-Instruct
7
  - lora
8
  - transformers
 
 
 
 
9
  ---
10
 
11
- # Model Card for Model ID
12
-
13
- <!-- Provide a quick summary of what the model is/does. -->
14
-
15
-
16
-
17
- ## Model Details
18
-
19
- ### Model Description
20
-
21
- <!-- Provide a longer summary of what this model is. -->
22
-
23
-
24
-
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
-
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ### Direct Use
46
-
47
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
48
-
49
- [More Information Needed]
50
-
51
- ### Downstream Use [optional]
52
-
53
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
54
-
55
- [More Information Needed]
56
-
57
- ### Out-of-Scope Use
58
-
59
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
60
-
61
- [More Information Needed]
62
-
63
- ## Bias, Risks, and Limitations
64
-
65
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
66
-
67
- [More Information Needed]
68
-
69
- ### Recommendations
70
-
71
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
72
-
73
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
74
-
75
- ## How to Get Started with the Model
76
-
77
- Use the code below to get started with the model.
78
-
79
- [More Information Needed]
80
-
81
- ## Training Details
82
-
83
- ### Training Data
84
-
85
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
-
87
- [More Information Needed]
88
-
89
- ### Training Procedure
90
-
91
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
92
-
93
- #### Preprocessing [optional]
94
-
95
- [More Information Needed]
96
-
97
-
98
- #### Training Hyperparameters
99
-
100
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
-
102
- #### Speeds, Sizes, Times [optional]
103
-
104
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
105
-
106
- [More Information Needed]
107
-
108
- ## Evaluation
109
-
110
- <!-- This section describes the evaluation protocols and provides the results. -->
111
-
112
- ### Testing Data, Factors & Metrics
113
-
114
- #### Testing Data
115
-
116
- <!-- This should link to a Dataset Card if possible. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Factors
121
-
122
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Metrics
127
-
128
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Results
133
-
134
- [More Information Needed]
135
-
136
- #### Summary
137
-
138
-
139
-
140
- ## Model Examination [optional]
141
-
142
- <!-- Relevant interpretability work for the model goes here -->
143
-
144
- [More Information Needed]
145
-
146
- ## Environmental Impact
147
-
148
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
149
-
150
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
151
-
152
- - **Hardware Type:** [More Information Needed]
153
- - **Hours used:** [More Information Needed]
154
- - **Cloud Provider:** [More Information Needed]
155
- - **Compute Region:** [More Information Needed]
156
- - **Carbon Emitted:** [More Information Needed]
157
-
158
- ## Technical Specifications [optional]
159
-
160
- ### Model Architecture and Objective
161
-
162
- [More Information Needed]
163
-
164
- ### Compute Infrastructure
165
-
166
- [More Information Needed]
167
-
168
- #### Hardware
169
-
170
- [More Information Needed]
171
-
172
- #### Software
173
-
174
- [More Information Needed]
175
 
176
- ## Citation [optional]
177
 
178
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
179
 
180
- **BibTeX:**
181
 
182
- [More Information Needed]
183
 
184
- **APA:**
185
 
186
- [More Information Needed]
187
 
188
- ## Glossary [optional]
189
 
190
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
191
 
192
- [More Information Needed]
193
 
194
- ## More Information [optional]
195
 
196
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
197
 
198
- ## Model Card Authors [optional]
199
 
200
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
202
- ## Model Card Contact
203
 
204
- [More Information Needed]
205
  ### Framework versions
206
 
207
- - PEFT 0.18.0
 
 
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct
5
  tags:
6
  - base_model:adapter:Qwen/Qwen3-Coder-30B-A3B-Instruct
7
  - lora
8
  - transformers
9
+ pipeline_tag: text-generation
10
+ model-index:
11
+ - name: SFT-Qwen3-Coder-30B
12
+ results: []
13
  ---
14
 
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # SFT-Qwen3-Coder-30B
19
 
20
+ This model is a fine-tuned version of [Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6170
23
 
24
+ ## Model description
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
31
 
32
+ ## Training and evaluation data
33
 
34
+ More information needed
35
 
36
+ ## Training procedure
37
 
38
+ ### Training hyperparameters
39
 
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0001
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - gradient_accumulation_steps: 4
46
+ - total_train_batch_size: 8
47
+ - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - lr_scheduler_warmup_ratio: 0.03
50
+ - num_epochs: 5
51
 
52
+ ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:------:|:----:|:---------------:|
56
+ | 1.0338 | 0.2985 | 20 | 0.8592 |
57
+ | 0.7854 | 0.5970 | 40 | 0.7745 |
58
+ | 0.7071 | 0.8955 | 60 | 0.7222 |
59
+ | 0.6461 | 1.1940 | 80 | 0.6904 |
60
+ | 0.597 | 1.4925 | 100 | 0.6732 |
61
+ | 0.6358 | 1.7910 | 120 | 0.6513 |
62
+ | 0.634 | 2.0896 | 140 | 0.6401 |
63
+ | 0.5645 | 2.3881 | 160 | 0.6328 |
64
+ | 0.5858 | 2.6866 | 180 | 0.6240 |
65
+ | 0.5167 | 2.9851 | 200 | 0.6170 |
66
+ | 0.5141 | 3.2836 | 220 | 0.6325 |
67
+ | 0.4637 | 3.5821 | 240 | 0.6199 |
68
+ | 0.4506 | 3.8806 | 260 | 0.6183 |
69
 
 
70
 
 
71
  ### Framework versions
72
 
73
+ - PEFT 0.18.0
74
+ - Transformers 4.57.1
75
+ - Pytorch 2.8.0+cu126
76
+ - Datasets 4.4.1
77
+ - Tokenizers 0.22.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:146e122c0c81171702ce8b24bf403b7e773ee402dbca6f41910b4280fd8ee550
3
  size 1693023512
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f19fbbea70ce8c8219f4a2bac8a063c261ee178c08cde55dfcf78dcb5af6e1c0
3
  size 1693023512
trainer_state.json CHANGED
@@ -1,14 +1,227 @@
1
  {
2
- "best_global_step": null,
3
- "best_metric": null,
4
- "best_model_checkpoint": null,
5
- "epoch": 0.044859813084112146,
6
  "eval_steps": 20,
7
- "global_step": 3,
8
  "is_hyper_param_search": false,
9
  "is_local_process_zero": true,
10
  "is_world_process_zero": true,
11
- "log_history": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  "logging_steps": 20,
13
  "max_steps": 335,
14
  "num_input_tokens_seen": 0,
@@ -21,7 +234,7 @@
21
  "early_stopping_threshold": 0.0
22
  },
23
  "attributes": {
24
- "early_stopping_patience_counter": 0
25
  }
26
  },
27
  "TrainerControl": {
@@ -29,14 +242,14 @@
29
  "should_epoch_stop": false,
30
  "should_evaluate": false,
31
  "should_log": false,
32
- "should_save": false,
33
- "should_training_stop": false
34
  },
35
  "attributes": {}
36
  }
37
  },
38
- "total_flos": 0,
39
- "train_batch_size": 1,
40
  "trial_name": null,
41
  "trial_params": null
42
  }
 
1
  {
2
+ "best_global_step": 200,
3
+ "best_metric": 0.6170492768287659,
4
+ "best_model_checkpoint": "j05hr3d/SFT-Qwen3-Coder-30B/checkpoint-200",
5
+ "epoch": 3.8805970149253732,
6
  "eval_steps": 20,
7
+ "global_step": 260,
8
  "is_hyper_param_search": false,
9
  "is_local_process_zero": true,
10
  "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.29850746268656714,
14
+ "grad_norm": 0.23899878561496735,
15
+ "learning_rate": 9.753086419753087e-05,
16
+ "loss": 1.0338,
17
+ "step": 20
18
+ },
19
+ {
20
+ "epoch": 0.29850746268656714,
21
+ "eval_loss": 0.8592296838760376,
22
+ "eval_runtime": 701.9348,
23
+ "eval_samples_per_second": 0.085,
24
+ "eval_steps_per_second": 0.085,
25
+ "step": 20
26
+ },
27
+ {
28
+ "epoch": 0.5970149253731343,
29
+ "grad_norm": 0.25520724058151245,
30
+ "learning_rate": 9.135802469135802e-05,
31
+ "loss": 0.7854,
32
+ "step": 40
33
+ },
34
+ {
35
+ "epoch": 0.5970149253731343,
36
+ "eval_loss": 0.7744513750076294,
37
+ "eval_runtime": 703.0186,
38
+ "eval_samples_per_second": 0.085,
39
+ "eval_steps_per_second": 0.085,
40
+ "step": 40
41
+ },
42
+ {
43
+ "epoch": 0.8955223880597015,
44
+ "grad_norm": 0.2638116776943207,
45
+ "learning_rate": 8.518518518518518e-05,
46
+ "loss": 0.7071,
47
+ "step": 60
48
+ },
49
+ {
50
+ "epoch": 0.8955223880597015,
51
+ "eval_loss": 0.7222070693969727,
52
+ "eval_runtime": 693.9942,
53
+ "eval_samples_per_second": 0.086,
54
+ "eval_steps_per_second": 0.086,
55
+ "step": 60
56
+ },
57
+ {
58
+ "epoch": 1.1940298507462686,
59
+ "grad_norm": 0.2613872289657593,
60
+ "learning_rate": 7.901234567901235e-05,
61
+ "loss": 0.6461,
62
+ "step": 80
63
+ },
64
+ {
65
+ "epoch": 1.1940298507462686,
66
+ "eval_loss": 0.6904312968254089,
67
+ "eval_runtime": 694.9751,
68
+ "eval_samples_per_second": 0.086,
69
+ "eval_steps_per_second": 0.086,
70
+ "step": 80
71
+ },
72
+ {
73
+ "epoch": 1.4925373134328357,
74
+ "grad_norm": 0.30577611923217773,
75
+ "learning_rate": 7.283950617283951e-05,
76
+ "loss": 0.597,
77
+ "step": 100
78
+ },
79
+ {
80
+ "epoch": 1.4925373134328357,
81
+ "eval_loss": 0.6732019782066345,
82
+ "eval_runtime": 696.5746,
83
+ "eval_samples_per_second": 0.086,
84
+ "eval_steps_per_second": 0.086,
85
+ "step": 100
86
+ },
87
+ {
88
+ "epoch": 1.7910447761194028,
89
+ "grad_norm": 0.3245498538017273,
90
+ "learning_rate": 6.666666666666667e-05,
91
+ "loss": 0.6358,
92
+ "step": 120
93
+ },
94
+ {
95
+ "epoch": 1.7910447761194028,
96
+ "eval_loss": 0.6512805223464966,
97
+ "eval_runtime": 799.6309,
98
+ "eval_samples_per_second": 0.075,
99
+ "eval_steps_per_second": 0.075,
100
+ "step": 120
101
+ },
102
+ {
103
+ "epoch": 2.08955223880597,
104
+ "grad_norm": 0.2637373208999634,
105
+ "learning_rate": 6.049382716049383e-05,
106
+ "loss": 0.634,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 2.08955223880597,
111
+ "eval_loss": 0.6400731801986694,
112
+ "eval_runtime": 705.5566,
113
+ "eval_samples_per_second": 0.085,
114
+ "eval_steps_per_second": 0.085,
115
+ "step": 140
116
+ },
117
+ {
118
+ "epoch": 2.388059701492537,
119
+ "grad_norm": 0.23898719251155853,
120
+ "learning_rate": 5.4320987654320986e-05,
121
+ "loss": 0.5645,
122
+ "step": 160
123
+ },
124
+ {
125
+ "epoch": 2.388059701492537,
126
+ "eval_loss": 0.632786214351654,
127
+ "eval_runtime": 720.6114,
128
+ "eval_samples_per_second": 0.083,
129
+ "eval_steps_per_second": 0.083,
130
+ "step": 160
131
+ },
132
+ {
133
+ "epoch": 2.6865671641791042,
134
+ "grad_norm": 0.2892897427082062,
135
+ "learning_rate": 4.814814814814815e-05,
136
+ "loss": 0.5858,
137
+ "step": 180
138
+ },
139
+ {
140
+ "epoch": 2.6865671641791042,
141
+ "eval_loss": 0.6239627003669739,
142
+ "eval_runtime": 709.836,
143
+ "eval_samples_per_second": 0.085,
144
+ "eval_steps_per_second": 0.085,
145
+ "step": 180
146
+ },
147
+ {
148
+ "epoch": 2.9850746268656714,
149
+ "grad_norm": 0.30314791202545166,
150
+ "learning_rate": 4.197530864197531e-05,
151
+ "loss": 0.5167,
152
+ "step": 200
153
+ },
154
+ {
155
+ "epoch": 2.9850746268656714,
156
+ "eval_loss": 0.6170492768287659,
157
+ "eval_runtime": 714.4272,
158
+ "eval_samples_per_second": 0.084,
159
+ "eval_steps_per_second": 0.084,
160
+ "step": 200
161
+ },
162
+ {
163
+ "epoch": 3.283582089552239,
164
+ "grad_norm": 0.40364333987236023,
165
+ "learning_rate": 3.580246913580247e-05,
166
+ "loss": 0.5141,
167
+ "step": 220
168
+ },
169
+ {
170
+ "epoch": 3.283582089552239,
171
+ "eval_loss": 0.6325032711029053,
172
+ "eval_runtime": 737.356,
173
+ "eval_samples_per_second": 0.081,
174
+ "eval_steps_per_second": 0.081,
175
+ "step": 220
176
+ },
177
+ {
178
+ "epoch": 3.582089552238806,
179
+ "grad_norm": 0.4287453889846802,
180
+ "learning_rate": 2.962962962962963e-05,
181
+ "loss": 0.4637,
182
+ "step": 240
183
+ },
184
+ {
185
+ "epoch": 3.582089552238806,
186
+ "eval_loss": 0.6198841333389282,
187
+ "eval_runtime": 736.2311,
188
+ "eval_samples_per_second": 0.081,
189
+ "eval_steps_per_second": 0.081,
190
+ "step": 240
191
+ },
192
+ {
193
+ "epoch": 3.8805970149253732,
194
+ "grad_norm": 0.46068060398101807,
195
+ "learning_rate": 2.345679012345679e-05,
196
+ "loss": 0.4506,
197
+ "step": 260
198
+ },
199
+ {
200
+ "epoch": 3.8805970149253732,
201
+ "eval_loss": 0.6182536482810974,
202
+ "eval_runtime": 722.4258,
203
+ "eval_samples_per_second": 0.083,
204
+ "eval_steps_per_second": 0.083,
205
+ "step": 260
206
+ },
207
+ {
208
+ "epoch": 3.8805970149253732,
209
+ "step": 260,
210
+ "total_flos": 4.4405263196932915e+17,
211
+ "train_loss": 0.6257402566763071,
212
+ "train_runtime": 61966.0395,
213
+ "train_samples_per_second": 0.043,
214
+ "train_steps_per_second": 0.005
215
+ },
216
+ {
217
+ "epoch": 3.8805970149253732,
218
+ "eval_loss": 0.6170492768287659,
219
+ "eval_runtime": 712.8174,
220
+ "eval_samples_per_second": 0.084,
221
+ "eval_steps_per_second": 0.084,
222
+ "step": 260
223
+ }
224
+ ],
225
  "logging_steps": 20,
226
  "max_steps": 335,
227
  "num_input_tokens_seen": 0,
 
234
  "early_stopping_threshold": 0.0
235
  },
236
  "attributes": {
237
+ "early_stopping_patience_counter": 3
238
  }
239
  },
240
  "TrainerControl": {
 
242
  "should_epoch_stop": false,
243
  "should_evaluate": false,
244
  "should_log": false,
245
+ "should_save": true,
246
+ "should_training_stop": true
247
  },
248
  "attributes": {}
249
  }
250
  },
251
+ "total_flos": 4.4405263196932915e+17,
252
+ "train_batch_size": 2,
253
  "trial_name": null,
254
  "trial_params": null
255
  }