jacobi commited on
Commit
f31bd1b
·
verified ·
1 Parent(s): f3f7631

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -33
README.md CHANGED
@@ -52,39 +52,6 @@ model = SentenceTransformer("jacobi/nano-bge-m3")
52
  embeddings = model.encode(["Example sentence"])
53
  ```
54
 
55
- ### Distilling a Model2Vec model
56
-
57
- You can distill a Model2Vec model from a Sentence Transformer model using the `distill` method. First, install the `distill` extra with `pip install model2vec[distill]`. Then, run the following code:
58
-
59
- ```python
60
- from model2vec.distill import distill
61
-
62
- # Distill a Sentence Transformer model, in this case the BAAI/bge-base-en-v1.5 model
63
- m2v_model = distill(model_name="BAAI/bge-base-en-v1.5", pca_dims=256)
64
-
65
- # Save the model
66
- m2v_model.save_pretrained("m2v_model")
67
- ```
68
-
69
- ## How it works
70
-
71
- Model2vec creates a small, fast, and powerful model that outperforms other static embedding models by a large margin on all tasks we could find, while being much faster to create than traditional static embedding models such as GloVe. Best of all, you don't need any data to distill a model using Model2Vec.
72
-
73
- It works by passing a vocabulary through a sentence transformer model, then reducing the dimensionality of the resulting embeddings using PCA, and finally weighting the embeddings using [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx). During inference, we simply take the mean of all token embeddings occurring in a sentence.
74
-
75
- ## Additional Resources
76
-
77
- - [Model2Vec Repo](https://github.com/MinishLab/model2vec)
78
- - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e)
79
- - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results)
80
- - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
81
- - [Website](https://minishlab.github.io/)
82
-
83
-
84
- ## Library Authors
85
-
86
- Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
87
-
88
  ## Citation
89
 
90
  Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
 
52
  embeddings = model.encode(["Example sentence"])
53
  ```
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  ## Citation
56
 
57
  Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.