jatinmehra commited on
Commit
4f64eee
·
verified ·
1 Parent(s): 283f0db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -197
README.md CHANGED
@@ -9,202 +9,111 @@ tags:
9
  - transformers
10
  - trl
11
  - unsloth
 
 
 
 
 
 
 
12
  ---
13
 
14
- # Model Card for Model ID
15
-
16
- <!-- Provide a quick summary of what the model is/does. -->
17
-
18
-
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** [More Information Needed]
29
- - **Funded by [optional]:** [More Information Needed]
30
- - **Shared by [optional]:** [More Information Needed]
31
- - **Model type:** [More Information Needed]
32
- - **Language(s) (NLP):** [More Information Needed]
33
- - **License:** [More Information Needed]
34
- - **Finetuned from model [optional]:** [More Information Needed]
35
-
36
- ### Model Sources [optional]
37
-
38
- <!-- Provide the basic links for the model. -->
39
-
40
- - **Repository:** [More Information Needed]
41
- - **Paper [optional]:** [More Information Needed]
42
- - **Demo [optional]:** [More Information Needed]
43
-
44
- ## Uses
45
-
46
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
47
-
48
- ### Direct Use
49
-
50
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
51
-
52
- [More Information Needed]
53
-
54
- ### Downstream Use [optional]
55
-
56
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
57
-
58
- [More Information Needed]
59
-
60
- ### Out-of-Scope Use
61
-
62
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
63
-
64
- [More Information Needed]
65
-
66
- ## Bias, Risks, and Limitations
67
-
68
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
69
-
70
- [More Information Needed]
71
-
72
- ### Recommendations
73
-
74
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
75
-
76
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
77
-
78
- ## How to Get Started with the Model
79
-
80
- Use the code below to get started with the model.
81
-
82
- [More Information Needed]
83
-
84
- ## Training Details
85
-
86
- ### Training Data
87
-
88
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
89
-
90
- [More Information Needed]
91
-
92
- ### Training Procedure
93
-
94
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
95
-
96
- #### Preprocessing [optional]
97
-
98
- [More Information Needed]
99
-
100
-
101
- #### Training Hyperparameters
102
-
103
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
104
-
105
- #### Speeds, Sizes, Times [optional]
106
-
107
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
108
-
109
- [More Information Needed]
110
-
111
- ## Evaluation
112
-
113
- <!-- This section describes the evaluation protocols and provides the results. -->
114
-
115
- ### Testing Data, Factors & Metrics
116
-
117
- #### Testing Data
118
-
119
- <!-- This should link to a Dataset Card if possible. -->
120
-
121
- [More Information Needed]
122
-
123
- #### Factors
124
-
125
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
126
-
127
- [More Information Needed]
128
-
129
- #### Metrics
130
-
131
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
132
-
133
- [More Information Needed]
134
-
135
- ### Results
136
-
137
- [More Information Needed]
138
-
139
- #### Summary
140
-
141
-
142
-
143
- ## Model Examination [optional]
144
-
145
- <!-- Relevant interpretability work for the model goes here -->
146
-
147
- [More Information Needed]
148
-
149
- ## Environmental Impact
150
-
151
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
152
-
153
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
154
-
155
- - **Hardware Type:** [More Information Needed]
156
- - **Hours used:** [More Information Needed]
157
- - **Cloud Provider:** [More Information Needed]
158
- - **Compute Region:** [More Information Needed]
159
- - **Carbon Emitted:** [More Information Needed]
160
-
161
- ## Technical Specifications [optional]
162
-
163
- ### Model Architecture and Objective
164
-
165
- [More Information Needed]
166
-
167
- ### Compute Infrastructure
168
-
169
- [More Information Needed]
170
-
171
- #### Hardware
172
-
173
- [More Information Needed]
174
-
175
- #### Software
176
-
177
- [More Information Needed]
178
-
179
- ## Citation [optional]
180
-
181
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
182
-
183
- **BibTeX:**
184
-
185
- [More Information Needed]
186
-
187
- **APA:**
188
-
189
- [More Information Needed]
190
-
191
- ## Glossary [optional]
192
-
193
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
194
-
195
- [More Information Needed]
196
-
197
- ## More Information [optional]
198
-
199
- [More Information Needed]
200
-
201
- ## Model Card Authors [optional]
202
-
203
- [More Information Needed]
204
-
205
- ## Model Card Contact
206
-
207
- [More Information Needed]
208
- ### Framework versions
209
-
210
- - PEFT 0.16.0
 
9
  - transformers
10
  - trl
11
  - unsloth
12
+ - Reddit
13
+ - toxic
14
+ license: apache-2.0
15
+ language:
16
+ - en
17
+ metrics:
18
+ - accuracy
19
  ---
20
 
21
+ ## Description
22
+
23
+ This repository contains LoRA adapter weights trained on top of a Gemma-3-12B base model to help determine whether a Reddit comment violates a specified subreddit rule. The model expects a structured prompt containing (1) subreddit, (2) a single rule, (3) two violating examples, (4) two non-violating examples, and (5) the comment to evaluate. It was trained in an SFT-style to output a single token answer: either "Yes" or "No".
24
+
25
+ ## Intended uses and limitations
26
+
27
+ Intended uses
28
+ - Assist human moderators and researchers by triaging comments with a focused rule-based prompt.
29
+ - Rapidly surface potential rule violations for human review.
30
+
31
+ Out-of-scope / Not recommended
32
+ - Automated removal, banning, or other punitive actions without human oversight.
33
+ - Use on content domains very different from Reddit comments without re-evaluation.
34
+
35
+ ## Fine-tuning procedure
36
+ - Frameworks used: `unsloth` FastLanguageModel helper, `transformers`, `peft` (LoRA), `trl` (SFTTrainer), `datasets`.
37
+ - Base model: `unsloth/gemma-3-12b-it-unsloth-bnb-4bit` (loaded in 4-bit with bfloat16 where supported).
38
+ - LoRA / PEFT config (as used in the script):
39
+ - rank (r): 16
40
+ - alpha: 32
41
+ - target modules: ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
42
+ - lora_dropout: 0
43
+ - bias: "none"
44
+
45
+ - Training hyperparameters (from training script):
46
+ - max_seq_length: 2048
47
+ - per_device_train_batch_size: 1
48
+ - gradient_accumulation_steps: 4
49
+ - num_train_epochs: 2
50
+ - learning_rate: 2e-4
51
+ - optimizer: `paged_adamw_8bit`
52
+ - weight_decay: 0.1
53
+ - lr_scheduler_type: `cosine`
54
+ - seed(s): 3407 (and 52 referenced in script context)
55
+
56
+ - Training approach: SFTTrainer used with a chat-style prompt template and `train_on_responses_only` to teach the model to emit the target answer token.
57
+
58
+ ## How to use (example)
59
+
60
+ Below is a minimal example that demonstrates how to load the base model and apply the LoRA adapters for inference using `transformers` and `peft`. Adjust device and quantization options according to your environment.
61
+
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
64
+ from peft import PeftModel
65
+
66
+ # 1) Load tokenizer from the base model
67
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-3-12b-it-unsloth-bnb-4bit", use_fast=False)
68
+
69
+ # 2) Load the base model (example with 4-bit quantization)
70
+ bnb_config = BitsAndBytesConfig(load_in_4bit=True)
71
+ base_model = AutoModelForCausalLM.from_pretrained(
72
+ "unsloth/gemma-3-12b-it-unsloth-bnb-4bit",
73
+ device_map="auto",
74
+ quantization_config=bnb_config,
75
+ )
76
+
77
+ # 3) Load LoRA adapters (this repo's adapters)
78
+ model = PeftModel.from_pretrained(base_model, "jatinmehra/Gemma-3-12B-JigSaw-Agile-Community-Rules-Classification-reddit-mod")
79
+
80
+ # 4) Prepare a prompt (follow the same template as training)
81
+
82
+ SYS_PROMPT = "You are an expert content moderator. Carefully analyze whether comments violate specific subreddit rules by comparing them to the provided examples. Focus on the spirit and intent of the rule, not just exact keyword matches."
83
+ user_prompt = """
84
+ Subreddit: r/{subreddit}
85
+
86
+ Rule: {rule}
87
+
88
+ VIOLATING Examples (these break the rule):
89
+ Example 1: {positive_example_1}
90
+ Example 2: {positive_example_2}
91
+
92
+ NON-VIOLATING Examples (these follow the rule):
93
+ Example 1: {negative_example_1}
94
+ Example 2: {negative_example_2}
95
+
96
+ Comment to evaluate:
97
+ {body}
98
+
99
+ Does this comment violate the rule? Answer only Yes or No.
100
+ Answer:
101
+ """.format(
102
+ subreddit="example_sub",
103
+ rule="No personal attacks",
104
+ positive_example_1="You're an idiot for saying that.",
105
+ positive_example_2="Go kill yourself.",
106
+ negative_example_1="I disagree with your point.",
107
+ negative_example_2="This is inaccurate; here's a source.",
108
+ body="That person is so dumb for supporting that view."
109
+ )
110
+
111
+ message = [
112
+ {"role": "system", "content": SYS_PROMPT},
113
+ {"role": "user", "content": user_prompt}
114
+ ]
115
+
116
+ inputs = tokenizer(message, return_tensors="pt").to(model.device)
117
+ outputs = model.generate(**inputs, max_new_tokens=1)
118
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
119
+ ```