42

This model is a fine-tuned version of microsoft/resnet-50 on the cifar100 dataset. It achieves the following results on the evaluation set:

  • Loss: 64.2920
  • Accuracy: 0.0158
  • Dt Accuracy: 0.0158
  • Df Accuracy: 0.0176
  • Unlearn Overall Accuracy: 0
  • Unlearn Time: None

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Overall Accuracy Unlearn Overall Accuracy Time
No log 1.0 79 3.9909 0.4008 0 0 None
No log 2.0 158 9.1328 0.067 0 0 None
No log 3.0 237 16.8372 0.0184 0 0 None
No log 4.0 316 15.7294 0.0184 0 0 None
No log 5.0 395 27.6822 0.0162 0 0 None
No log 6.0 474 33.8280 0.015 0 0 None
0.0 7.0 553 38.8382 0.0168 0 0 None
0.0 8.0 632 48.6496 0.0154 0 0 None
0.0 9.0 711 53.8986 0.0162 0 0 None
0.0 10.0 790 50.3904 0.0164 0 0 None
0.0 11.0 869 52.8110 0.0162 0 0 None
0.0 12.0 948 49.5994 0.0172 0 0 None
0.0 13.0 1027 59.7650 0.0164 0 0 None
0.0 14.0 1106 60.5894 0.0174 0 0 None
0.0 15.0 1185 66.7336 0.0176 0 0 None
0.0 16.0 1264 61.0261 0.0182 0 0 None
0.0 17.0 1343 62.0881 0.0172 0 0 None
0.0 18.0 1422 68.1739 0.0174 0 0 None
0.0 19.0 1501 71.3448 0.0176 0 0 None
0.0 20.0 1580 64.2920 0.0176 0 0 None

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
23.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jialicheng/unlearn_cifar100_resnet-50_bad_teaching_10_42

Finetuned
(448)
this model