File size: 23,769 Bytes
c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 3d813dc c6ce1be 331a585 c6ce1be 3d813dc c6ce1be 1da93af 3d813dc c6ce1be 3d813dc c6ce1be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
# Copyright 2025 Jina AI. All rights reserved.
from math import sqrt
from typing import Optional, Tuple, Union
import torch
import torch.backends.cuda
import torch.nn as nn
from transformers import AutoModel, AutoModelForCausalLM, PreTrainedModel
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.processing_utils import Unpack
from .blocks_jvlm import (
MHSDPA,
Dropout,
ExtendedEmbedding,
PatchDropout,
PatchEmbedding,
RotaryEmbedding,
TransformerBlock,
VisionLanguageConnector,
build_layer_norm,
resolve_causal_mask,
)
from .configuration_jvlm import JinaVLMConfig, JinaVLMTextConfig, JinaVLMVisionConfig
class JinaPreTrainedModel(PreTrainedModel):
config: JinaVLMConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_supports_flash_attn = True
_supports_sdpa = True
_no_split_modules = ['TransformerBlock']
_skip_keys_device_placement = 'past_key_values'
_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {
'hidden_states': TransformerBlock,
'attentions': MHSDPA,
}
class JinaVLMVisionModel(JinaPreTrainedModel):
config: JinaVLMVisionConfig
def __init__(self, config: JinaVLMVisionConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.n_layers = config.n_layers
self.input_size = config.input_size
self.patch_size = config.patch_size
self.cls_embed = None
self.pos_embed = None
self.rope = None
self.n_prefix_tokens = 0
self.interpolation = config.positional_interpolation
self.use_cls_token = config.use_cls_token
if self.use_cls_token:
self.cls_embed = nn.Parameter(torch.zeros(self.hidden_size))
self.n_prefix_tokens = 1
if config.use_absolute_positional_embeddings:
if self.n_positions is None:
raise ValueError(
'A fixed number of positions is required to define positional '
'embeddings. Make sure input_size is set.'
)
self.pos_embed = nn.Parameter(
torch.zeros(self.n_positions, self.hidden_size)
)
self.patch_embed = PatchEmbedding(
self.hidden_size,
config.patch_size,
config.n_channels,
config.input_size,
bias=config.patch_embedding_bias,
use_linear=(
config.linear_patch_embedding
if config.input_size is not None
else False
),
)
self.patch_drop = (
PatchDropout(config.patch_dropout)
if config.patch_dropout > 0.0
else nn.Identity()
)
self.layers = nn.ModuleList(
[
TransformerBlock(
config.block_config,
self.hidden_size,
is_causal=False,
layer_idx=i,
attn_implementation=self.config._attn_implementation,
)
for i in range(self.n_layers)
]
)
self.pre_lnorm = nn.Identity()
if self.config.pre_lnorm:
self.pre_lnorm = build_layer_norm(
config.block_config.lnorm_config, size=self.hidden_size
)
self.post_lnorm = nn.Identity()
if self.config.post_lnorm:
self.post_lnorm = build_layer_norm(
config.block_config.lnorm_config, size=self.hidden_size
)
self.vl_connector = VisionLanguageConnector(
config=config.vl_connector_config,
input_size=config.hidden_size * len(config.vit_layers),
intermediate_size=config.hidden_size,
output_size=config.output_size,
n_patches=self.n_patches,
)
self.vit_layers = self.config.vit_layers
self.gradient_checkpointing = False
@property
def n_patches(self) -> Optional[Tuple[int, int]]:
if self.input_size is None:
return None
h, w = self.input_size
return h // self.patch_size, w // self.patch_size
@property
def n_positions(self) -> Optional[int]:
if self.input_size is None:
return None
n_h, n_w = self.n_patches
n_pos = n_h * n_w
if self.use_cls_token:
n_pos += 1
return n_pos
def add_positional_embedding(
self,
x: torch.Tensor,
patch_num: Tuple[int, int],
) -> torch.Tensor:
cls_pos_emb = None
pos_emb = self.pos_embed
if self.cls_embed is not None:
cls_pos_emb = self.pos_embed[0:1]
pos_emb = self.pos_embed[1:]
n_pos, dim = pos_emb.shape
h, w = int(sqrt(n_pos)), int(sqrt(n_pos))
pos_emb = pos_emb.reshape(h, w, dim)
patch_num_0, patch_num_1 = patch_num
if h != patch_num_0 or w != patch_num_1:
# Derived from
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
# antialias: default True in jax.image.resize
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
pos_emb = nn.functional.interpolate(
pos_emb,
size=(patch_num_0, patch_num_1),
mode=self.interpolation,
align_corners=False,
antialias=True,
)
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
if cls_pos_emb is not None:
pos = torch.cat([cls_pos_emb[None, :, :], pos_emb[None, :, :]], dim=1).to(
x.dtype
)
else:
pos = pos_emb[None, :, :].to(x.dtype)
return x + pos
def get_visual_features(
self,
images: torch.Tensor,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
x, shape = self.patch_embed(images)
if self.cls_embed is not None:
cls = self.cls_embed.view(1, 1, -1).expand(x.shape[0], -1, -1).to(x.dtype)
x = torch.cat([cls, x], dim=1)
if self.pos_embed is not None:
assert shape == self.n_patches
x = self.add_positional_embedding(x, shape)
x = self.patch_drop(x)
x = self.pre_lnorm(x)
hidden_states = []
attentions = []
for layer in self.layers:
x, attn = layer(
x,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
hidden_states.append(x)
attentions.append(attn)
x = self.post_lnorm(x)
hidden_states.append(x)
return BaseModelOutput(
last_hidden_state=x,
hidden_states=tuple(hidden_states),
attentions=tuple(attentions),
)
def forward(
self,
images: torch.Tensor,
image_masks: torch.Tensor,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutput:
b, t, n, d = images.shape
mask = ~torch.all(images.view(b * t, n, d) == -1, dim=(1, 2), keepdim=True)
images = images.view(b * t, n, d)
out = self.get_visual_features(images, **kwargs)
image_features = out.hidden_states
features = []
for layer in self.vit_layers:
feats = image_features[layer]
if self.n_prefix_tokens > 0:
feats = feats[:, 1:]
features.append(feats)
image_features = torch.cat(features, dim=-1)
image_features = image_features * mask
image_features = image_features.view(b, t, n, -1).contiguous()
image_features = self.vl_connector(
image_features,
image_masks,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
return BaseModelOutput(
last_hidden_state=image_features,
hidden_states=out.hidden_states,
attentions=out.attentions,
)
class JinaVLMTextModel(JinaPreTrainedModel):
config: JinaVLMTextConfig
def __init__(self, config: JinaVLMTextConfig, *args, **kwargs):
super().__init__(config, *args, **kwargs)
if (
self.config.embedding_size is not None
and self.config.embedding_size != self.config.vocab_size
):
if self.config.embedding_size < self.config.vocab_size:
raise ValueError(
'Embedding size should be at least as big as vocab size'
)
elif self.config.embedding_size % 128 != 0:
import warnings
warnings.warn(
(
'Embedding size is not a multiple of 128! This could hurt '
'throughput performance'
),
UserWarning,
)
# this is super slow so make sure torch won't use it
torch.backends.cuda.enable_mem_efficient_sdp(False)
if self.config.additional_vocab_size is not None:
embedding = ExtendedEmbedding(
config.embedding_size or config.vocab_size,
config.additional_vocab_size,
config.hidden_size,
)
else:
embedding = nn.Embedding(
config.embedding_size or config.vocab_size,
config.hidden_size,
)
self.embedding = embedding
self.embedding_dropout = Dropout(config.embedding_dropout)
self.ln_f = build_layer_norm(
config.block_config.lnorm_config, size=config.hidden_size
)
self.rope = None
if self.config.rope:
self.rope = RotaryEmbedding(
self.config,
theta=self.config.rope_theta,
head_dim=self.config.block_config.attn_config.head_dim,
hidden_size=self.config.hidden_size,
partial_rotary_factor=self.config.partial_rotary_factor,
scaling=self.config.rope_scaling,
)
layers = [
TransformerBlock(
config.block_config,
hidden_size=config.hidden_size,
is_causal=True,
layer_idx=i,
attn_implementation=self.config._attn_implementation,
)
for i in range(config.n_layers)
]
setattr(self.config, 'num_hidden_layers', config.n_layers)
self.layers = nn.ModuleList(layers)
self.pos_embedding = None
if not self.config.rope:
self.pos_embedding = nn.Embedding(
config.max_sequence_length,
config.hidden_size,
)
self.gradient_checkpointing = False
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_features: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
'You must specify exactly one of input_ids or inputs_embeds'
)
has_image = image_features is not None
assert not (has_image and inputs_embeds is not None), (
'Cannot provide both image features and input embeddings.'
)
bs, sl = input_ids.size() if inputs_embeds is None else inputs_embeds.size()[:2]
device = input_ids.device if input_ids is not None else inputs_embeds.device
past_length = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
# torch.jit.trace() doesn't support cache objects in the output
if use_cache and past_key_values is None and not torch.jit.is_tracing():
# TODO: Fix in new transformers version
# past_key_values = DynamicCache(config=self.config)
past_key_values = DynamicCache()
if attention_mask is None:
if input_ids is None:
attention_mask = torch.ones((bs, sl), dtype=torch.bool, device=device)
else:
attention_mask = input_ids != -1
if cache_position is None:
cache_position = torch.arange(past_length, past_length + sl, device=device)
if position_ids is None:
position_ids = torch.clamp(
torch.cumsum(attention_mask.to(torch.int32), dim=-1) - 1,
min=0,
).broadcast_to((bs, attention_mask.shape[-1]))
if input_ids is not None:
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
x = inputs_embeds
if inputs_embeds is None:
x = self.embedding(input_ids)
if image_features is not None:
num_image, num_patch = image_features.shape[1:3]
assert image_input_idx.shape == (bs, num_image, num_patch)
# insert the image feature into the embedding.
image_features = image_features.view(bs, num_image * num_patch, -1)
image_input_idx = image_input_idx.view(bs, num_image * num_patch)
valid = image_input_idx >= 0
batch_idx = torch.arange(bs, device=x.device)
batch_idx = torch.tile(batch_idx[:, None], [1, image_features.shape[1]])
image_features = image_features.to(x.device)
x = x.clone() # Clone x to avoid in-place operation on leaf tensor
x[batch_idx[valid], image_input_idx[valid]] += image_features[valid]
if not self.rope:
pos = self.transformer.wpe(position_ids) # type: ignore
x = pos + x
x = self.embedding_dropout(x)
if self.config.normalize_input_embeds:
x = x * (self.config.hidden_size**0.5)
causal_mask = resolve_causal_mask(
attention_mask,
causal_mask,
past_key_values=past_key_values,
batch_size=bs,
seq_len=sl,
past_length=past_length,
device=x.device,
)
rope_embeddings = None
if self.rope is not None:
rope_embeddings = self.rope(x, position_ids)
all_hidden_states = []
all_attention_weights = []
for layer in self.layers:
x, att_weights = layer(
x=x,
rope_embeddings=rope_embeddings,
attention_mask=causal_mask,
past_key_values=past_key_values,
cache_position=cache_position,
drop_mask=response_mask,
attn_implementation=self.config._attn_implementation,
**kwargs,
)
all_hidden_states.append(x)
if att_weights is not None:
all_attention_weights.append(att_weights)
# Apply final layer norm
# shape: (batch_size, seq_len or 1, d_model)
x = self.ln_f(x)
all_hidden_states.append(x)
return BaseModelOutputWithPast(
last_hidden_state=x,
past_key_values=past_key_values,
hidden_states=tuple(all_hidden_states),
attentions=tuple(all_attention_weights),
)
class JinaVLM(JinaPreTrainedModel):
config: JinaVLMConfig
def __init__(self, config: JinaVLMConfig):
super().__init__(config)
self.vision_model: Optional[JinaVLMVisionModel] = None
if config.vision_config is not None:
self.vision_model = JinaVLMVisionModel._from_config(config.vision_config)
self.language_model = JinaVLMTextModel._from_config(config.text_config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.embedding
def set_input_embeddings(self, value):
self.language_model.embedding = value
def get_decoder(self):
return self.language_model.layers
def set_decoder(self, decoder):
self.language_model.layers = decoder
def get_image_features(
self,
images: torch.Tensor,
image_masks: Optional[torch.Tensor] = None,
) -> torch.Tensor:
image_features = self.vision_model(images, image_masks)
batch_size, num_image, num_patch = image_features.shape[0:3]
return image_features.view(batch_size, num_image * num_patch, -1)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
image_features = None
if images is not None and images.shape[1] > 0:
image_out = self.vision_model(images, image_masks, **kwargs)
image_features = image_out.last_hidden_state
return self.language_model(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
causal_mask=causal_mask,
response_mask=response_mask,
position_ids=position_ids,
image_features=image_features,
image_input_idx=image_input_idx,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
class JinaVLMForConditionalGeneration(JinaPreTrainedModel, GenerationMixin):
_tied_weights_keys = {
'lm_head.weight': 'model.language_model.embedding.embedding.weight'
}
accepts_loss_kwargs = False
config: JinaVLMConfig
def __init__(self, config: JinaVLMConfig):
super().__init__(config)
self.model = JinaVLM(config)
self.lm_head = nn.Linear(
config.text_config.hidden_size,
config.text_config.embedding_size or config.text_config.vocab_size,
bias=False,
)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_decoder(self):
return self.model.get_decoder()
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_image_features(
self,
images: torch.Tensor,
image_masks: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.model.get_image_features(images, image_masks)
@property
def language_model(self):
return self.model.language_model
@property
def vision_model(self):
return self.model.vision_model
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[FlashAttentionKwargs],
) -> CausalLMOutputWithPast:
outputs = self.model(
input_ids=input_ids,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
causal_mask=causal_mask,
response_mask=response_mask,
position_ids=position_ids,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
past_key_values=past_key_values,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
out = outputs.last_hidden_state
slice_indices = logits_to_keep
if isinstance(logits_to_keep, int):
slice_indices = slice(-logits_to_keep, None)
logits = self.lm_head(out[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits,
labels=labels,
vocab_size=self.config.text_config.vocab_size,
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
images: Optional[torch.Tensor] = None,
image_masks: Optional[torch.Tensor] = None,
image_input_idx: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
response_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
):
"""
Overwritten -- During decoding we don't want to forward image inputs
to the model
"""
inputs = super().prepare_inputs_for_generation(
input_ids,
inputs_embeds=inputs_embeds,
images=images,
image_masks=image_masks,
image_input_idx=image_input_idx,
attention_mask=attention_mask,
response_mask=response_mask,
position_ids=position_ids,
past_key_values=past_key_values,
cache_position=cache_position,
use_cache=use_cache,
**kwargs,
)
if cache_position[0] != 0:
inputs['images'] = None
return inputs
JinaVLM.register_for_auto_class(auto_class=AutoModel)
JinaVLMForConditionalGeneration.register_for_auto_class(auto_class=AutoModelForCausalLM)
|