File size: 22,597 Bytes
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
3d813dc
c6ce1be
 
 
 
3d813dc
 
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
94a1346
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
3d813dc
c6ce1be
 
3d813dc
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
c6ce1be
 
 
3d813dc
c6ce1be
 
 
 
 
 
3d813dc
c6ce1be
 
3d813dc
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1346
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1346
 
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1346
c6ce1be
 
 
 
 
 
94a1346
 
 
c6ce1be
 
 
 
 
 
 
3d813dc
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a1346
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d363df2
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d813dc
c6ce1be
 
 
3d813dc
c6ce1be
 
 
 
 
 
 
 
 
 
 
 
94a1346
c6ce1be
 
 
 
 
3d813dc
 
 
 
c6ce1be
 
3d813dc
 
c6ce1be
 
 
 
 
3d813dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6ce1be
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# Copyright 2025 Jina AI. All rights reserved.

from collections import defaultdict
from typing import Dict, List, Optional, Sequence, Tuple, TypedDict, Union

import numpy as np
from transformers import PreTrainedTokenizer
from transformers.feature_extraction_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import (
    AllKwargsForChatTemplate,
    CommonKwargs,
    MultiModalData,
    ProcessorMixin,
    Unpack,
)
from transformers.tokenization_utils_base import (
    PaddingStrategy,
    PreTokenizedInput,
    TextInput,
)

from .image_processing_jvlm import JinaVLMImageProcessor, JinaVLMImagesKwargs


class JinaVLMTextKwargs(TypedDict, total=False):
    """
    Attributes:
        padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*)
            Activates and controls padding.
        max_length (`int`, *optional*):
            Controls the maximum length to use by one of the truncation/padding
            parameters.
        is_split_into_words (`bool`, *optional*):
            Whether or not the input is already pre-tokenized.
    """

    padding: Union[bool, str, PaddingStrategy]
    padding_side: Optional[str]
    max_length: Optional[int]
    is_split_into_words: Optional[bool]


class JinaVLMProcessingKwargs(JinaVLMTextKwargs, JinaVLMImagesKwargs, CommonKwargs):
    return_labels: Optional[bool]


class JinaVLMProcessor(ProcessorMixin):
    r"""Constructs a JinaVLM processor which wraps a JinaVLM image processor and a
    tokenizer into a single processor.

    Args:
        image_processor ([`JinaVLMImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`AutoTokenizer`], *optional*):
            The tokenizer is a required input.
        chat_template (`str`, *optional*):
            A Jinja template which will be used to convert lists of messages in a chat
            into a tokenizable string.
    """

    attributes = ['image_processor', 'tokenizer']
    image_processor_class = 'AutoImageProcessor'
    tokenizer_class = 'AutoTokenizer'

    IMAGE_PATCH_TOKEN = '<im_patch>'
    IMAGE_START_TOKEN = '<im_start>'
    IMAGE_END_TOKEN = '<im_end>'
    IMAGE_COLUMN_TOKEN = '<im_col>'
    IMAGE_PROMPT_TOKEN = '<|image|>'
    IMAGE_SLICE_TOKEN = '<im_slice>'
    EXTRA_TOKENS = (
        IMAGE_PATCH_TOKEN,
        IMAGE_START_TOKEN,
        IMAGE_END_TOKEN,
        IMAGE_COLUMN_TOKEN,
        IMAGE_PROMPT_TOKEN,
        IMAGE_SLICE_TOKEN,
    )

    TEXT_KEYS = [
        'input_ids',
        'labels',
    ]
    IMAGE_KEYS = [
        'images',
        'image_masks',
        'image_input_idx',
    ]

    def __init__(
        self,
        image_processor: JinaVLMImageProcessor,
        tokenizer: PreTrainedTokenizer,
        chat_template=None,
        always_start_with_space: bool = False,
        **_,
    ):
        self.image_processor: JinaVLMImageProcessor = image_processor
        self.tokenizer: PreTrainedTokenizer = tokenizer
        super().__init__(image_processor, tokenizer, chat_template=chat_template)

        self.special_token_ids = self.get_special_token_ids()
        self.image_patch_token_id = self.special_token_ids[self.IMAGE_PATCH_TOKEN]
        self.image_start_token_id = self.special_token_ids[self.IMAGE_START_TOKEN]
        self.image_end_token_id = self.special_token_ids[self.IMAGE_END_TOKEN]
        self.image_column_token_id = self.special_token_ids[self.IMAGE_COLUMN_TOKEN]
        self.image_prompt_token_id = self.special_token_ids[self.IMAGE_PROMPT_TOKEN]
        self.image_slice_token_id = self.special_token_ids[self.IMAGE_SLICE_TOKEN]
        self.image_processor.set_special_token_ids(
            patch_token_id=self.image_patch_token_id,
            start_token_id=self.image_start_token_id,
            end_token_id=self.image_end_token_id,
            column_token_id=self.image_column_token_id,
        )
        self.max_sequence_length = self.tokenizer.model_max_length or 4096
        self.max_crops = self.image_processor.max_crops
        self.always_start_with_space = always_start_with_space

    def get_special_token_ids(self) -> Dict[str, int]:
        special_token_ids = {}
        for token in self.EXTRA_TOKENS:
            if token not in self.tokenizer.get_vocab():
                raise ValueError(
                    f'Image token {token} not found in the tokenizer vocabulary. '
                    'Make sure the tokenizer is trained with extra tokens '
                    f'{self.EXTRA_TOKENS}.'
                )
            token_ids = self.tokenizer.encode(token, add_special_tokens=False)
            assert len(token_ids) == 1
            special_token_ids[token] = token_ids[0]

        return special_token_ids

    @staticmethod
    def _pad_np_sequences(
        tensors: Sequence[Optional[np.ndarray]],
        max_sequence_length: int,
        dtype: Optional[np.dtype] = None,
        pad: Union[
            PaddingStrategy.MAX_LENGTH, PaddingStrategy.LONGEST
        ] = PaddingStrategy.MAX_LENGTH,
        pad_value: int = -1,
        padding_side: str = 'right',
    ) -> Tuple[np.ndarray, np.ndarray]:
        if pad == PaddingStrategy.MAX_LENGTH:
            max_len = max_sequence_length
            tensor = [x for x in tensors if x is not None][0]
            arr = np.full(
                [len(tensors), max_sequence_length] + list(tensor.shape[1:]),
                pad_value,
                dtype=dtype or tensor.dtype,
            )
        else:
            max_len = max((0 if x is None else x.shape[0]) for x in tensors)
            max_len = min(max_len, max_sequence_length)
            arr = np.full(
                [len(tensors), max_len] + list(tensors[0].shape[1:]),
                pad_value,
                dtype=dtype or tensors[0].dtype,
            )

        padlens = np.zeros(len(tensors), dtype=np.int32)
        for ix, tensor in enumerate(tensors):
            if tensor is not None and len(tensor) > 0:
                padlens[ix] = max_len - min(len(tensor), max_len)
                if padding_side == 'left':
                    arr[ix, -len(tensor) :] = tensor[:max_len]
                else:
                    arr[ix, : len(tensor)] = tensor[:max_len]

        return arr, padlens

    def _collate(
        self,
        batch: Dict[str, List[Optional[np.ndarray]]],
        text_max_sequence_length: Optional[int] = None,
        image_max_sequence_length: Optional[int] = None,
        padding: Union[
            PaddingStrategy.MAX_LENGTH, PaddingStrategy.LONGEST
        ] = PaddingStrategy.MAX_LENGTH,
        padding_side: str = 'right',
        pad_value: int = -1,
    ):
        out = {}
        padlens = {}
        for key, value in batch.items():
            _padding_side = 'right'
            if key in self.TEXT_KEYS:
                _padding_side = padding_side
                max_len = text_max_sequence_length
                dtype = np.int64
            elif key in self.IMAGE_KEYS:
                max_len = image_max_sequence_length
                dtype = np.int64
                if key == 'images':
                    dtype = np.float32
            else:
                continue
            out[key], padlens[key] = self._pad_np_sequences(
                value,
                max_len,
                dtype=dtype,
                pad=padding,
                pad_value=pad_value,
                padding_side=_padding_side,
            )

        input_ids: np.ndarray = out['input_ids']
        attention_mask = input_ids != -1
        out['attention_mask'] = attention_mask

        input_ids_padlens = padlens['input_ids']
        image_input_idx = out.get('image_input_idx', None)
        if image_input_idx is not None and padding_side == 'left':
            n_crops, n_image_tokens = image_input_idx.shape[1:3]
            shift = input_ids_padlens[:, np.newaxis, np.newaxis]
            shift = np.repeat(shift, n_image_tokens, axis=2)
            shift = np.repeat(shift, n_crops, axis=1)
            image_input_idx[image_input_idx < 0] = -text_max_sequence_length
            image_input_idx = image_input_idx + shift
            out['image_input_idx'] = image_input_idx

        if text_max_sequence_length is not None:
            image_input_idx = out.get('image_input_idx', [])
            n = len(image_input_idx)
            for i in range(n):
                arr = image_input_idx[i]
                if arr.ndim > 0 and arr.size > 0:
                    n_image_tokens = arr.max()
                    if n_image_tokens > text_max_sequence_length - 3:
                        raise RuntimeError(
                            'Image tokens truncation at sequence boundary. Max '
                            f'sequence length ({text_max_sequence_length}) is too '
                            'small to fit the generated image tokens '
                            f'({n_image_tokens}). Consider increasing the max '
                            'sequence length or tweaking the image processing '
                            'parameters (`max_crops`, `max_pixels`) to reduce the '
                            'number of image tokens.'
                        )

        return out

    def apply_chat_template(
        self,
        conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
        chat_template: Optional[str] = None,
        **kwargs: Unpack[AllKwargsForChatTemplate],
    ) -> str:
        return super().apply_chat_template(
            conversation,
            chat_template=chat_template,
            always_start_with_space=self.always_start_with_space,
            image_prompt_token=self.IMAGE_PROMPT_TOKEN,
            **kwargs,
        )

    def _interleave_text_and_image_tokens(
        self,
        token_ids: np.ndarray,
        image_crops: List[np.ndarray],
        image_tokens: List[np.ndarray],
        image_input_idx: List[np.ndarray],
        image_padding_mask: List[np.ndarray],
        return_labels: bool = False,
        add_empty_image_features: bool = False,
    ):
        """Interleave images and text tokens into multi-modal features for the model."""
        if len(image_crops) == 0:
            input_ids = token_ids
            target_tokens = input_ids
            ends_with_eos = input_ids[-1] == self.tokenizer.eos_token_id
            bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
            # noinspection PyTypeChecker
            input_ids = np.pad(input_ids, [[1, 0]], constant_values=bos)
            if ends_with_eos:
                input_ids = input_ids[:-1]
            else:
                # We are presumably doing inference since the messages end with user
                # response instead of a target response, so these fields should not be
                # used, but pad them anyway just so everything is a consistent length
                # noinspection PyTypeChecker
                target_tokens = np.pad(target_tokens, [[0, 1]], constant_values=-1)

            position_ids = np.arange(len(input_ids), dtype=np.int64)
            data = {
                'input_ids': input_ids,
                'position_ids': position_ids,
            }
            if return_labels:
                data['labels'] = target_tokens
            if add_empty_image_features:
                # Add size-zero image features, this can be useful to make sure all
                # devices get an image input when the image ViT is FSDP wrapped
                tokens_per_image = self.image_processor.tokens_per_image
                patch_size = self.image_processor.patch_size
                n_pixels = patch_size**2 * 3
                h, w = self.image_processor.base_input_size
                n_patches = (h // patch_size) * (w // patch_size)
                crops = np.zeros((0, n_patches, n_pixels), dtype=np.float32)
                image_idx = np.zeros((0, tokens_per_image), np.int32)
                image_masks = np.zeros((0, n_patches), dtype=np.float32)
                data.update(
                    dict(
                        images=crops,
                        image_input_idx=image_idx,
                        image_masks=image_masks,
                    )
                )
            return data

        n = len(image_crops)
        assert n == len(image_tokens) == len(image_input_idx) == len(image_padding_mask)
        image_idx = np.argwhere(token_ids == self.image_prompt_token_id)
        if len(image_idx) == 0:
            image_idx = [-1] * n
        else:
            image_idx = image_idx[:, 0]
            assert len(image_idx) == n

        all_tokens = []
        all_image_crops = []
        all_image_input_idx = []
        all_image_padding_masks = []
        cumulative_image_idx = 0

        for ix in range(n):
            token_ix = image_idx[ix]
            if token_ix == -1:  # -1 is an image inserted at the very start
                start = 0
                token_ix = 0
            else:
                start = 0 if ix == 0 else image_idx[ix - 1] + 1

            _img_crops = image_crops[ix]
            _img_tokens = image_tokens[ix]
            _img_input_idx = image_input_idx[ix]
            _img_padding_mask = image_padding_mask[ix]
            all_image_input_idx.append(_img_input_idx + token_ix + cumulative_image_idx)
            all_image_crops.append(_img_crops)
            all_image_padding_masks.append(_img_padding_mask)
            all_tokens.append(token_ids[start:token_ix])
            all_tokens.append(_img_tokens)

            # -1 because the first token is already in the input as general image token
            # and is replace by the img_start token
            cumulative_image_idx += len(_img_tokens) - 1

        end = image_idx[-1] + 1
        all_tokens.append(token_ids[end:])

        input_ids = np.concatenate(all_tokens, 0)
        images = np.concatenate(all_image_crops, 0)
        image_input_idx = np.concatenate(all_image_input_idx, 0)
        image_masks = np.concatenate(all_image_padding_masks, 0)

        target_tokens = input_ids
        ends_with_eos = input_ids[-1] == self.tokenizer.eos_token_id
        bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
        # noinspection PyTypeChecker
        input_ids = np.pad(input_ids, [[1, 0]], constant_values=bos)
        if ends_with_eos:
            input_ids = input_ids[:-1]
        else:
            # We are presumably doing inference since the messages end with user
            # response instead of a target response, so these fields should not be used,
            # but pad them anyway just so everything is a consistent length
            # noinspection PyTypeChecker
            target_tokens = np.pad(target_tokens, [[0, 1]], constant_values=-1)

        image_input_idx = np.where(
            image_input_idx < 0, image_input_idx, image_input_idx + 1
        )
        position_ids = np.arange(len(input_ids), dtype=np.int64)
        data = {
            'input_ids': input_ids,
            'position_ids': position_ids,
            'images': images,
            'image_input_idx': image_input_idx,
            'image_masks': image_masks,
        }
        if return_labels:
            data['labels'] = target_tokens
        return data

    def __call__(
        self,
        images: Union[None, ImageInput, List[ImageInput]] = None,
        text: Union[
            None, TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
        ] = None,
        **kwargs: Unpack[JinaVLMProcessingKwargs],
    ) -> BatchFeature:
        """Main method to prepare for the model one or several sequences(s) and
        image(s). This method forwards the `text` and `kwargs` arguments to  the
        tokenizr if `text` is not `None` to encode the text. To prepare the vision
        inputs, this method forwards the `images` and `kwargs` arguments the image
        processor if `images` is not `None`.

        Args:
            images (
                `PIL.Image.Image`,
                `np.ndarray`,
                `torch.Tensor`,
                `list[PIL.Image.Image]`,
                `list[np.ndarray]`,
                `list[torch.Tensor]`
                `list[list[PIL.Image.Image]]`,
                `list[list[np.ndarray]]`,
                `list[list[torch.Tensor]]`
            ):
                The image or batch of images to be prepared. Each image can be a PIL
                image, NumPy array or PyTorch tensor. Both channels-first and
                channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be
                a string or a list of strings (pretokenized string). If the sequences
                are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of
                sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values
                are:
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the fields required for
            inference.
        """
        if text is None:
            raise ValueError('Processor requires text input.')

        return_tensors = kwargs.pop('return_tensors', None)
        return_labels = kwargs.pop('return_labels', False)
        padding = kwargs.pop('padding', PaddingStrategy.LONGEST)
        padding_side = kwargs.pop('padding_side', 'left')
        max_length = kwargs.pop('max_length', None)
        max_crops = kwargs.get('max_crops', None)

        images_kwargs = {}
        text_kwargs = {}
        unexpected_kwargs = {}
        for k, v in kwargs.items():
            if k in JinaVLMImagesKwargs.__annotations__:
                images_kwargs[k] = v
            elif k in JinaVLMTextKwargs.__annotations__:
                text_kwargs[k] = v
            else:
                unexpected_kwargs[k] = v

        text_inputs = self.tokenizer(
            text,
            truncation=None,
            padding=PaddingStrategy.DO_NOT_PAD,
            max_length=None,
            return_tensors='np',
            return_attention_mask=False,
            add_special_tokens=False,
            **text_kwargs,
        )
        token_ids = text_inputs['input_ids']
        batch_size = token_ids.shape[0]
        images = images or [[] for _ in range(batch_size)]

        if batch_size == 1:
            if isinstance(images, list):
                if isinstance(images[0], list):
                    if len(images) != 1:
                        raise ValueError(
                            'When given a single text, the processor expects a nested '
                            'list of images to have outer length of 1 '
                            f'(got {len(images)})'
                        )
                else:
                    images = [images]
            else:
                images = [[images]]
        else:
            if isinstance(images, list):
                if len(images) != batch_size:
                    raise ValueError(
                        f'When given multiple ({batch_size}) texts, the processor '
                        f'expects a list of images or a list of list of images with '
                        f'outer length {batch_size} (got {len(images)})'
                    )
                images = [elm if isinstance(elm, list) else [elm] for elm in images]
            else:
                raise ValueError(
                    'When given multiple texts, the processor expects a list of '
                    f'images or a list of list of images, got {type(images)} instead'
                )

        outputs = defaultdict(list)
        n_images = []
        for idx in range(batch_size):
            _token_ids = token_ids[idx]
            _images = images[idx]
            n_images.append(len(_images))
            image_inputs = self.image_processor(_images, **images_kwargs)
            image_crops = image_inputs['image_crops']
            image_tokens = image_inputs['image_tokens']
            image_input_idx = image_inputs['image_input_idx']
            image_padding_mask = image_inputs.get('image_padding_mask')
            output = self._interleave_text_and_image_tokens(
                _token_ids,
                image_crops,
                image_tokens,
                image_input_idx,
                image_padding_mask if image_padding_mask is not None else [],
                add_empty_image_features=(batch_size > 1),
                return_labels=return_labels,
            )
            for k, v in output.items():
                outputs[k].append(v)

        if padding != PaddingStrategy.DO_NOT_PAD:
            text_max_sequence_length = max_length or self.max_sequence_length
            max_crops = max_crops or self.max_crops
            max_n_images = max(n_images)
            image_max_sequence_length = (max_crops + 1) * max_n_images
            outputs = self._collate(
                outputs,
                text_max_sequence_length=text_max_sequence_length,
                image_max_sequence_length=image_max_sequence_length,
                padding=padding,
                padding_side=padding_side,
            )
        return BatchFeature(data=outputs, tensor_type=return_tensors)

    def _get_num_multimodal_tokens(
        self,
        image_sizes: Optional[List[List[int]]] = None,
        **kwargs: Unpack[JinaVLMImagesKwargs],
    ) -> MultiModalData:
        """Computes the number of placeholder tokens needed for multimodal inputs with
        the given sizes.

        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.
        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per
            each of the provided input modalities, along with other useful data.
        """
        data = {}
        if image_sizes is not None:
            n_patches = [
                self.image_processor.get_n_image_patches(h, w, **kwargs)
                for h, w in image_sizes
            ]
            data.update({'num_image_tokens': n_patches, 'num_image_patches': n_patches})
        return MultiModalData(**data)


JinaVLMProcessor.register_for_auto_class()