Built with Axolotl

See axolotl config

axolotl version: 0.12.2

base_model: kakaocorp/kanana-1.5-2.1b-instruct-2505


load_in_8bit: false
load_in_4bit: false

datasets:
  - path: train.jsonl
    type: chat_template

dataset_prepared_path: preprocess
val_set_size: 0.01
output_dir: ./outputs
dataloader_num_workers: 56

adapter: 
lora_model_dir:

sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: ko-llm
wandb_entity:
wandb_watch:
wandb_name: 
wandb_log_model: kanana-1.5.2.1b-instruct-sft
hub_model_id: kanana-1.5.2.1b-instruct-sft

gradient_accumulation_steps: 64
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5

bf16: auto
tf32: false

gradient_checkpointing:
resume_from_checkpoint:
logging_steps: 1
flash_attention: false

warmup_ratio: 0.05
weight_decay: 0.01
evals_per_epoch: 0
saves_per_epoch: 1

fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_activation_checkpointing: true

kanana-1.5.2.1b-instruct-sft

This model is a fine-tuned version of kakaocorp/kanana-1.5-2.1b-instruct-2505 on the train.jsonl dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • total_eval_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 43
  • training_steps: 860

Training results

Framework versions

  • Transformers 4.55.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
7
Safetensors
Model size
1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for jiwon9703/kanana-1.5.2.1b-instruct-sft

Finetuned
(22)
this model
Quantizations
1 model