|  |  | 
					
						
						|  | from datasets import load_dataset, load_metric, Audio, Dataset | 
					
						
						|  | from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM | 
					
						
						|  | import re | 
					
						
						|  | import torch | 
					
						
						|  | import argparse | 
					
						
						|  | from typing import Dict | 
					
						
						|  |  | 
					
						
						|  | def log_results(result: Dataset, args: Dict[str, str]): | 
					
						
						|  | """ DO NOT CHANGE. This function computes and logs the result metrics. """ | 
					
						
						|  |  | 
					
						
						|  | log_outputs = args.log_outputs | 
					
						
						|  | dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer = load_metric("wer") | 
					
						
						|  | cer = load_metric("cer") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) | 
					
						
						|  | cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result_str = ( | 
					
						
						|  | f"WER: {wer_result}\n" | 
					
						
						|  | f"CER: {cer_result}" | 
					
						
						|  | ) | 
					
						
						|  | print(result_str) | 
					
						
						|  |  | 
					
						
						|  | with open(f"{dataset_id}_eval_results.txt", "w") as f: | 
					
						
						|  | f.write(result_str) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if log_outputs is not None: | 
					
						
						|  | pred_file = f"log_{dataset_id}_predictions.txt" | 
					
						
						|  | target_file = f"log_{dataset_id}_targets.txt" | 
					
						
						|  |  | 
					
						
						|  | with open(pred_file, "w") as p, open(target_file, "w") as t: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def write_to_file(batch, i): | 
					
						
						|  | p.write(f"{i}" + "\n") | 
					
						
						|  | p.write(batch["prediction"] + "\n") | 
					
						
						|  | t.write(f"{i}" + "\n") | 
					
						
						|  | t.write(batch["target"] + "\n") | 
					
						
						|  |  | 
					
						
						|  | result.map(write_to_file, with_indices=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str: | 
					
						
						|  | """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """ | 
					
						
						|  |  | 
					
						
						|  | text = text.lower() if to_lower else text.upper() | 
					
						
						|  |  | 
					
						
						|  | text = re.sub(invalid_chars_regex, " ", text) | 
					
						
						|  |  | 
					
						
						|  | text = re.sub("\s+", " ", text).strip() | 
					
						
						|  |  | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(args): | 
					
						
						|  |  | 
					
						
						|  | dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.greedy: | 
					
						
						|  | processor = Wav2Vec2Processor.from_pretrained(args.model_id) | 
					
						
						|  | decoder = None | 
					
						
						|  | else: | 
					
						
						|  | processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id) | 
					
						
						|  | decoder = processor.decoder | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = processor.feature_extractor | 
					
						
						|  | tokenizer = processor.tokenizer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.device is None: | 
					
						
						|  | args.device = 0 if torch.cuda.is_available() else -1 | 
					
						
						|  |  | 
					
						
						|  | config = AutoConfig.from_pretrained(args.model_id) | 
					
						
						|  | model = AutoModelForCTC.from_pretrained(args.model_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer, | 
					
						
						|  | feature_extractor=feature_extractor, decoder=decoder, device=args.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained(args.model_id) | 
					
						
						|  | tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))] | 
					
						
						|  | special_tokens = [ | 
					
						
						|  | tokenizer.pad_token, tokenizer.word_delimiter_token, | 
					
						
						|  | tokenizer.unk_token, tokenizer.bos_token, | 
					
						
						|  | tokenizer.eos_token, | 
					
						
						|  | ] | 
					
						
						|  | non_special_tokens = [x for x in tokens if x not in special_tokens] | 
					
						
						|  | invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]" | 
					
						
						|  | normalize_to_lower = False | 
					
						
						|  | for token in non_special_tokens: | 
					
						
						|  | if token.isalpha() and token.islower(): | 
					
						
						|  | normalize_to_lower = True | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower): | 
					
						
						|  | prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s) | 
					
						
						|  |  | 
					
						
						|  | batch["prediction"] = prediction["text"] | 
					
						
						|  | batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower) | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = dataset.map(map_to_pred, remove_columns=dataset.column_names) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | result = result.filter(lambda example: example["target"] != "") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_results(result, args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'`  for Common Voice" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`" | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--greedy", action='store_true', help="If defined, the LM will be ignored during inference." | 
					
						
						|  | ) | 
					
						
						|  | parser.add_argument( | 
					
						
						|  | "--device", | 
					
						
						|  | type=int, | 
					
						
						|  | default=None, | 
					
						
						|  | help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", | 
					
						
						|  | ) | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | main(args) | 
					
						
						|  |  |