Commit
·
9d23c4b
1
Parent(s):
8fa704b
update evaluation
Browse files- README.md +41 -73
- eval.py +164 -0
- full_eval.sh +15 -0
- log_mozilla-foundation_common_voice_6_0_pl_test_predictions.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_pl_test_predictions_greedy.txt +0 -0
- log_mozilla-foundation_common_voice_6_0_pl_test_targets.txt +0 -0
- log_speech-recognition-community-v2_dev_data_pl_validation_predictions.txt +0 -0
- log_speech-recognition-community-v2_dev_data_pl_validation_predictions_greedy.txt +0 -0
- log_speech-recognition-community-v2_dev_data_pl_validation_targets.txt +0 -0
- mozilla-foundation_common_voice_6_0_pl_test_eval_results.txt +2 -0
- mozilla-foundation_common_voice_6_0_pl_test_eval_results_greedy.txt +2 -0
- speech-recognition-community-v2_dev_data_pl_validation_eval_results.txt +2 -0
- speech-recognition-community-v2_dev_data_pl_validation_eval_results_greedy.txt +2 -0
README.md
CHANGED
|
@@ -1,21 +1,25 @@
|
|
| 1 |
---
|
| 2 |
language: pl
|
|
|
|
| 3 |
datasets:
|
| 4 |
- common_voice
|
|
|
|
| 5 |
metrics:
|
| 6 |
- wer
|
| 7 |
- cer
|
| 8 |
tags:
|
|
|
|
| 9 |
- audio
|
| 10 |
- automatic-speech-recognition
|
| 11 |
- speech
|
| 12 |
- xlsr-fine-tuning-week
|
| 13 |
-
|
|
|
|
| 14 |
model-index:
|
| 15 |
- name: XLSR Wav2Vec2 Polish by Jonatas Grosman
|
| 16 |
results:
|
| 17 |
- task:
|
| 18 |
-
name: Speech Recognition
|
| 19 |
type: automatic-speech-recognition
|
| 20 |
dataset:
|
| 21 |
name: Common Voice pl
|
|
@@ -24,10 +28,36 @@ model-index:
|
|
| 24 |
metrics:
|
| 25 |
- name: Test WER
|
| 26 |
type: wer
|
| 27 |
-
value: 14.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
- name: Test CER
|
| 29 |
type: cer
|
| 30 |
-
value:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
---
|
| 32 |
|
| 33 |
# Wav2Vec2-Large-XLSR-53-Polish
|
|
@@ -109,76 +139,14 @@ for i, predicted_sentence in enumerate(predicted_sentences):
|
|
| 109 |
|
| 110 |
## Evaluation
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
```python
|
| 115 |
-
import torch
|
| 116 |
-
import re
|
| 117 |
-
import librosa
|
| 118 |
-
from datasets import load_dataset, load_metric
|
| 119 |
-
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 120 |
-
|
| 121 |
-
LANG_ID = "pl"
|
| 122 |
-
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-polish"
|
| 123 |
-
DEVICE = "cuda"
|
| 124 |
-
|
| 125 |
-
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
|
| 126 |
-
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
|
| 127 |
-
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
|
| 128 |
-
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
|
| 129 |
-
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
|
| 134 |
-
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py
|
| 135 |
-
|
| 136 |
-
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
|
| 137 |
-
|
| 138 |
-
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
| 139 |
-
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
| 140 |
-
model.to(DEVICE)
|
| 141 |
-
|
| 142 |
-
# Preprocessing the datasets.
|
| 143 |
-
# We need to read the audio files as arrays
|
| 144 |
-
def speech_file_to_array_fn(batch):
|
| 145 |
-
with warnings.catch_warnings():
|
| 146 |
-
warnings.simplefilter("ignore")
|
| 147 |
-
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
|
| 148 |
-
batch["speech"] = speech_array
|
| 149 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
|
| 150 |
-
return batch
|
| 151 |
-
|
| 152 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 153 |
-
|
| 154 |
-
# Preprocessing the datasets.
|
| 155 |
-
# We need to read the audio files as arrays
|
| 156 |
-
def evaluate(batch):
|
| 157 |
-
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 158 |
-
|
| 159 |
-
with torch.no_grad():
|
| 160 |
-
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
| 161 |
-
|
| 162 |
-
pred_ids = torch.argmax(logits, dim=-1)
|
| 163 |
-
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 164 |
-
return batch
|
| 165 |
-
|
| 166 |
-
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 167 |
-
|
| 168 |
-
predictions = [x.upper() for x in result["pred_strings"]]
|
| 169 |
-
references = [x.upper() for x in result["sentence"]]
|
| 170 |
-
|
| 171 |
-
print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
| 172 |
-
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
|
| 173 |
```
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-04-22). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
| facebook/wav2vec2-large-xlsr-53-polish | 20.17% | 5.38% |
|
| 183 |
-
| alexcleu/wav2vec2-large-xlsr-polish | 21.72% | 5.17% |
|
| 184 |
-
| mbien/wav2vec2-large-xlsr-polish | 22.93% | 5.13% |
|
|
|
|
| 1 |
---
|
| 2 |
language: pl
|
| 3 |
+
license: apache-2.0
|
| 4 |
datasets:
|
| 5 |
- common_voice
|
| 6 |
+
- mozilla-foundation/common_voice_6_0
|
| 7 |
metrics:
|
| 8 |
- wer
|
| 9 |
- cer
|
| 10 |
tags:
|
| 11 |
+
- pl
|
| 12 |
- audio
|
| 13 |
- automatic-speech-recognition
|
| 14 |
- speech
|
| 15 |
- xlsr-fine-tuning-week
|
| 16 |
+
- robust-speech-event
|
| 17 |
+
- mozilla-foundation/common_voice_6_0
|
| 18 |
model-index:
|
| 19 |
- name: XLSR Wav2Vec2 Polish by Jonatas Grosman
|
| 20 |
results:
|
| 21 |
- task:
|
| 22 |
+
name: Automatic Speech Recognition
|
| 23 |
type: automatic-speech-recognition
|
| 24 |
dataset:
|
| 25 |
name: Common Voice pl
|
|
|
|
| 28 |
metrics:
|
| 29 |
- name: Test WER
|
| 30 |
type: wer
|
| 31 |
+
value: 14.21
|
| 32 |
+
- name: Test CER
|
| 33 |
+
type: cer
|
| 34 |
+
value: 3.49
|
| 35 |
+
- name: Test WER (+LM)
|
| 36 |
+
type: wer
|
| 37 |
+
value: 10.98
|
| 38 |
+
- name: Test CER (+LM)
|
| 39 |
+
type: cer
|
| 40 |
+
value: 2.93
|
| 41 |
+
- task:
|
| 42 |
+
name: Automatic Speech Recognition
|
| 43 |
+
type: automatic-speech-recognition
|
| 44 |
+
dataset:
|
| 45 |
+
name: Robust Speech Event - Dev Data
|
| 46 |
+
type: speech-recognition-community-v2/dev_data
|
| 47 |
+
args: pl
|
| 48 |
+
metrics:
|
| 49 |
+
- name: Test WER
|
| 50 |
+
type: wer
|
| 51 |
+
value: 33.18
|
| 52 |
- name: Test CER
|
| 53 |
type: cer
|
| 54 |
+
value: 15.92
|
| 55 |
+
- name: Test WER (+LM)
|
| 56 |
+
type: wer
|
| 57 |
+
value: 29.31
|
| 58 |
+
- name: Test CER (+LM)
|
| 59 |
+
type: cer
|
| 60 |
+
value: 15.17
|
| 61 |
---
|
| 62 |
|
| 63 |
# Wav2Vec2-Large-XLSR-53-Polish
|
|
|
|
| 139 |
|
| 140 |
## Evaluation
|
| 141 |
|
| 142 |
+
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
```bash
|
| 145 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
```
|
| 147 |
|
| 148 |
+
2. To evaluate on `speech-recognition-community-v2/dev_data`
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
```bash
|
| 151 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
|
| 152 |
+
```
|
|
|
|
|
|
|
|
|
eval.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
| 3 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
| 4 |
+
import re
|
| 5 |
+
import torch
|
| 6 |
+
import argparse
|
| 7 |
+
from typing import Dict
|
| 8 |
+
|
| 9 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
| 10 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
| 11 |
+
|
| 12 |
+
log_outputs = args.log_outputs
|
| 13 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
| 14 |
+
|
| 15 |
+
# load metric
|
| 16 |
+
wer = load_metric("wer")
|
| 17 |
+
cer = load_metric("cer")
|
| 18 |
+
|
| 19 |
+
# compute metrics
|
| 20 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
| 21 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
| 22 |
+
|
| 23 |
+
# print & log results
|
| 24 |
+
result_str = (
|
| 25 |
+
f"WER: {wer_result}\n"
|
| 26 |
+
f"CER: {cer_result}"
|
| 27 |
+
)
|
| 28 |
+
print(result_str)
|
| 29 |
+
|
| 30 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
| 31 |
+
f.write(result_str)
|
| 32 |
+
|
| 33 |
+
# log all results in text file. Possibly interesting for analysis
|
| 34 |
+
if log_outputs is not None:
|
| 35 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
| 36 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
| 37 |
+
|
| 38 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
| 39 |
+
|
| 40 |
+
# mapping function to write output
|
| 41 |
+
def write_to_file(batch, i):
|
| 42 |
+
p.write(f"{i}" + "\n")
|
| 43 |
+
p.write(batch["prediction"] + "\n")
|
| 44 |
+
t.write(f"{i}" + "\n")
|
| 45 |
+
t.write(batch["target"] + "\n")
|
| 46 |
+
|
| 47 |
+
result.map(write_to_file, with_indices=True)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
| 51 |
+
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
|
| 52 |
+
|
| 53 |
+
text = text.lower() if to_lower else text.upper()
|
| 54 |
+
|
| 55 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
| 56 |
+
|
| 57 |
+
text = re.sub("\s+", " ", text).strip()
|
| 58 |
+
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def main(args):
|
| 63 |
+
# load dataset
|
| 64 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
| 65 |
+
|
| 66 |
+
# for testing: only process the first two examples as a test
|
| 67 |
+
# dataset = dataset.select(range(10))
|
| 68 |
+
|
| 69 |
+
# load processor
|
| 70 |
+
if args.greedy:
|
| 71 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
| 72 |
+
decoder = None
|
| 73 |
+
else:
|
| 74 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
| 75 |
+
decoder = processor.decoder
|
| 76 |
+
|
| 77 |
+
feature_extractor = processor.feature_extractor
|
| 78 |
+
tokenizer = processor.tokenizer
|
| 79 |
+
|
| 80 |
+
# resample audio
|
| 81 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
|
| 82 |
+
|
| 83 |
+
# load eval pipeline
|
| 84 |
+
if args.device is None:
|
| 85 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
| 86 |
+
|
| 87 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
| 88 |
+
model = AutoModelForCTC.from_pretrained(args.model_id)
|
| 89 |
+
|
| 90 |
+
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
|
| 91 |
+
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
|
| 92 |
+
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
|
| 93 |
+
|
| 94 |
+
# build normalizer config
|
| 95 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
| 96 |
+
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
|
| 97 |
+
special_tokens = [
|
| 98 |
+
tokenizer.pad_token, tokenizer.word_delimiter_token,
|
| 99 |
+
tokenizer.unk_token, tokenizer.bos_token,
|
| 100 |
+
tokenizer.eos_token,
|
| 101 |
+
]
|
| 102 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
| 103 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
| 104 |
+
normalize_to_lower = False
|
| 105 |
+
for token in non_special_tokens:
|
| 106 |
+
if token.isalpha() and token.islower():
|
| 107 |
+
normalize_to_lower = True
|
| 108 |
+
break
|
| 109 |
+
|
| 110 |
+
# map function to decode audio
|
| 111 |
+
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
|
| 112 |
+
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
|
| 113 |
+
|
| 114 |
+
batch["prediction"] = prediction["text"]
|
| 115 |
+
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
|
| 116 |
+
return batch
|
| 117 |
+
|
| 118 |
+
# run inference on all examples
|
| 119 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
| 120 |
+
|
| 121 |
+
# filtering out empty targets
|
| 122 |
+
result = result.filter(lambda example: example["target"] != "")
|
| 123 |
+
|
| 124 |
+
# compute and log_results
|
| 125 |
+
# do not change function below
|
| 126 |
+
log_results(result, args)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
if __name__ == "__main__":
|
| 130 |
+
parser = argparse.ArgumentParser()
|
| 131 |
+
|
| 132 |
+
parser.add_argument(
|
| 133 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
| 134 |
+
)
|
| 135 |
+
parser.add_argument(
|
| 136 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
| 137 |
+
)
|
| 138 |
+
parser.add_argument(
|
| 139 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
| 140 |
+
)
|
| 141 |
+
parser.add_argument(
|
| 142 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
| 143 |
+
)
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
| 146 |
+
)
|
| 147 |
+
parser.add_argument(
|
| 148 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
| 149 |
+
)
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
| 152 |
+
)
|
| 153 |
+
parser.add_argument(
|
| 154 |
+
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
|
| 155 |
+
)
|
| 156 |
+
parser.add_argument(
|
| 157 |
+
"--device",
|
| 158 |
+
type=int,
|
| 159 |
+
default=None,
|
| 160 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
| 161 |
+
)
|
| 162 |
+
args = parser.parse_args()
|
| 163 |
+
|
| 164 |
+
main(args)
|
full_eval.sh
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CV - TEST
|
| 2 |
+
|
| 3 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test --log_outputs --greedy
|
| 4 |
+
mv log_mozilla-foundation_common_voice_6_0_pl_test_predictions.txt log_mozilla-foundation_common_voice_6_0_pl_test_predictions_greedy.txt
|
| 5 |
+
mv mozilla-foundation_common_voice_6_0_pl_test_eval_results.txt mozilla-foundation_common_voice_6_0_pl_test_eval_results_greedy.txt
|
| 6 |
+
|
| 7 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test --log_outputs
|
| 8 |
+
|
| 9 |
+
# HF EVENT - DEV
|
| 10 |
+
|
| 11 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs --greedy
|
| 12 |
+
mv log_speech-recognition-community-v2_dev_data_pl_validation_predictions.txt log_speech-recognition-community-v2_dev_data_pl_validation_predictions_greedy.txt
|
| 13 |
+
mv speech-recognition-community-v2_dev_data_pl_validation_eval_results.txt speech-recognition-community-v2_dev_data_pl_validation_eval_results_greedy.txt
|
| 14 |
+
|
| 15 |
+
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs
|
log_mozilla-foundation_common_voice_6_0_pl_test_predictions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_mozilla-foundation_common_voice_6_0_pl_test_predictions_greedy.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_mozilla-foundation_common_voice_6_0_pl_test_targets.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_speech-recognition-community-v2_dev_data_pl_validation_predictions.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_speech-recognition-community-v2_dev_data_pl_validation_predictions_greedy.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
log_speech-recognition-community-v2_dev_data_pl_validation_targets.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
mozilla-foundation_common_voice_6_0_pl_test_eval_results.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.10980770869429375
|
| 2 |
+
CER: 0.029387492481781432
|
mozilla-foundation_common_voice_6_0_pl_test_eval_results_greedy.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.14213082625614223
|
| 2 |
+
CER: 0.03491250891695691
|
speech-recognition-community-v2_dev_data_pl_validation_eval_results.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.2931926751592357
|
| 2 |
+
CER: 0.15175189393939395
|
speech-recognition-community-v2_dev_data_pl_validation_eval_results_greedy.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
WER: 0.33187367303609344
|
| 2 |
+
CER: 0.15924530632411066
|