Jan Philipp Harries
commited on
Commit
·
401cb9c
0
Parent(s):
v01
Browse files- .gitattributes +1 -0
- config.json +36 -0
- configuration_mixformer_sequential.py +61 -0
- generation_config.json +4 -0
- latest +1 -0
- modeling_mixformer_sequential.py +778 -0
- pytorch_model.bin +3 -0
- rng_state_0.pth +0 -0
- rng_state_1.pth +0 -0
- trainer_state.json +0 -0
- training_args.bin +0 -0
- zero_to_fp32.py +587 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/workspace/models/phi-1_5",
|
| 3 |
+
"activation_function": "gelu_new",
|
| 4 |
+
"architecture": {
|
| 5 |
+
"block_cls": "parallel",
|
| 6 |
+
"mixer": {},
|
| 7 |
+
"mlp": {
|
| 8 |
+
"mlp_cls": "mlp"
|
| 9 |
+
}
|
| 10 |
+
},
|
| 11 |
+
"architectures": [
|
| 12 |
+
"MixFormerSequentialForCausalLM"
|
| 13 |
+
],
|
| 14 |
+
"auto_map": {
|
| 15 |
+
"AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
|
| 16 |
+
"AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
|
| 17 |
+
},
|
| 18 |
+
"embd_layer": "default",
|
| 19 |
+
"embd_pdrop": 0.0,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"layer_norm_epsilon": 1e-05,
|
| 22 |
+
"model_type": "mixformer-sequential",
|
| 23 |
+
"n_embd": 2048,
|
| 24 |
+
"n_head": 32,
|
| 25 |
+
"n_inner": null,
|
| 26 |
+
"n_layer": 24,
|
| 27 |
+
"n_positions": 2048,
|
| 28 |
+
"phyagi_version": "0.0.4.dev",
|
| 29 |
+
"resid_pdrop": 0.0,
|
| 30 |
+
"rotary_dim": 32,
|
| 31 |
+
"tie_word_embeddings": false,
|
| 32 |
+
"torch_dtype": "bfloat16",
|
| 33 |
+
"transformers_version": "4.33.1",
|
| 34 |
+
"use_cache": false,
|
| 35 |
+
"vocab_size": 50304
|
| 36 |
+
}
|
configuration_mixformer_sequential.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
from typing import Any, Dict, List, Optional, Union
|
| 6 |
+
|
| 7 |
+
from transformers import PretrainedConfig
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class MixFormerSequentialConfig(PretrainedConfig):
|
| 11 |
+
"""MixFormer (sequential for DeepSpeed) configuration."""
|
| 12 |
+
|
| 13 |
+
model_type = "mixformer-sequential"
|
| 14 |
+
|
| 15 |
+
attribute_map = {
|
| 16 |
+
"max_position_embeddings": "n_positions",
|
| 17 |
+
"hidden_size": "n_embd",
|
| 18 |
+
"num_attention_heads": "n_head",
|
| 19 |
+
"num_hidden_layers": "n_layer",
|
| 20 |
+
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
| 21 |
+
"blocks": "architecture", # `blocks` key is for backward compatibility
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
vocab_size: Optional[int] = 50304,
|
| 27 |
+
n_positions: Optional[int] = 2048,
|
| 28 |
+
n_embd: Optional[int] = 1024,
|
| 29 |
+
n_layer: Optional[int] = 20,
|
| 30 |
+
n_inner: Optional[int] = None,
|
| 31 |
+
n_head: Optional[int] = 16,
|
| 32 |
+
rotary_dim: Optional[int] = 32,
|
| 33 |
+
activation_function: Optional[str] = "gelu_new",
|
| 34 |
+
embd_layer: Optional[str] = "default",
|
| 35 |
+
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
| 36 |
+
embd_pdrop: Optional[float] = 0.0,
|
| 37 |
+
resid_pdrop: Optional[float] = 0.0,
|
| 38 |
+
layer_norm_epsilon: Optional[float] = 1e-5,
|
| 39 |
+
initializer_range: Optional[float] = 0.02,
|
| 40 |
+
tie_word_embeddings: Optional[bool] = False,
|
| 41 |
+
pad_vocab_size_multiple: Optional[int] = 64,
|
| 42 |
+
**kwargs
|
| 43 |
+
) -> None:
|
| 44 |
+
#self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
| 45 |
+
#see https://huggingface.co/teknium/Puffin-Phi/commit/4648d063244250ea9612c241ff996a41b101c9ad
|
| 46 |
+
self.vocab_size = vocab_size
|
| 47 |
+
self.n_positions = n_positions
|
| 48 |
+
self.n_embd = n_embd
|
| 49 |
+
self.n_layer = n_layer
|
| 50 |
+
self.n_inner = n_inner
|
| 51 |
+
self.n_head = n_head
|
| 52 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
| 53 |
+
self.activation_function = activation_function
|
| 54 |
+
self.embd_layer = embd_layer
|
| 55 |
+
self.architecture = architecture
|
| 56 |
+
self.embd_pdrop = embd_pdrop
|
| 57 |
+
self.resid_pdrop = resid_pdrop
|
| 58 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 59 |
+
self.initializer_range = initializer_range
|
| 60 |
+
|
| 61 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"transformers_version": "4.33.1"
|
| 4 |
+
}
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step2250
|
modeling_mixformer_sequential.py
ADDED
|
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Microsoft Corporation.
|
| 2 |
+
# Licensed under the MIT license.
|
| 3 |
+
|
| 4 |
+
# BSD 3-Clause License
|
| 5 |
+
#
|
| 6 |
+
# Copyright (c) 2022, Tri Dao, [email protected].
|
| 7 |
+
# All rights reserved.
|
| 8 |
+
#
|
| 9 |
+
# Redistribution and use in source and binary forms, with or without
|
| 10 |
+
# modification, are permitted provided that the following conditions are met:
|
| 11 |
+
#
|
| 12 |
+
# * Redistributions of source code must retain the above copyright notice, this
|
| 13 |
+
# list of conditions and the following disclaimer.
|
| 14 |
+
#
|
| 15 |
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
| 16 |
+
# this list of conditions and the following disclaimer in the documentation
|
| 17 |
+
# and/or other materials provided with the distribution.
|
| 18 |
+
#
|
| 19 |
+
# * Neither the name of the copyright holder nor the names of its
|
| 20 |
+
# contributors may be used to endorse or promote products derived from
|
| 21 |
+
# this software without specific prior written permission.
|
| 22 |
+
#
|
| 23 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 24 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 25 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 26 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 27 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 28 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 29 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 30 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 31 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 32 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 33 |
+
|
| 34 |
+
from __future__ import annotations
|
| 35 |
+
|
| 36 |
+
import math
|
| 37 |
+
import copy
|
| 38 |
+
from typing import Any, Dict, Optional, Tuple
|
| 39 |
+
from dataclasses import dataclass, field
|
| 40 |
+
|
| 41 |
+
import torch
|
| 42 |
+
import torch.nn as nn
|
| 43 |
+
|
| 44 |
+
from einops import rearrange
|
| 45 |
+
from transformers.activations import ACT2FN
|
| 46 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
| 47 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 48 |
+
|
| 49 |
+
from .configuration_mixformer_sequential import MixFormerSequentialConfig
|
| 50 |
+
|
| 51 |
+
@dataclass
|
| 52 |
+
class InferenceParams:
|
| 53 |
+
"""Inference parameters that are passed to the main model in order
|
| 54 |
+
to efficienly calculate and store the context during inference.
|
| 55 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
| 56 |
+
max_sequence_len: int
|
| 57 |
+
max_batch_size: int
|
| 58 |
+
sequence_len_offset: int = 0
|
| 59 |
+
batch_size_offset: int = 0
|
| 60 |
+
key_value_memory_dict: dict = field(default_factory=dict)
|
| 61 |
+
fused_ft_kernel: bool = False
|
| 62 |
+
lengths_per_sample: Optional[torch.Tensor] = None
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class Embedding(nn.Module):
|
| 66 |
+
"""Token embedding with dropout."""
|
| 67 |
+
|
| 68 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
| 69 |
+
super().__init__()
|
| 70 |
+
|
| 71 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
| 72 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 73 |
+
|
| 74 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
| 75 |
+
input_shape = input_ids.size()
|
| 76 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 77 |
+
|
| 78 |
+
hidden_states = self.wte(input_ids)
|
| 79 |
+
hidden_states = self.drop(hidden_states)
|
| 80 |
+
|
| 81 |
+
return hidden_states
|
| 82 |
+
|
| 83 |
+
class RotaryEmbedding(nn.Module):
|
| 84 |
+
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
| 85 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
dim: int,
|
| 90 |
+
base: Optional[int] = 10000,
|
| 91 |
+
scale_base: Optional[float] = None,
|
| 92 |
+
device: Optional[str] = None,
|
| 93 |
+
**kwargs,
|
| 94 |
+
) -> None:
|
| 95 |
+
super().__init__()
|
| 96 |
+
|
| 97 |
+
if scale_base is not None:
|
| 98 |
+
raise NotImplementedError
|
| 99 |
+
|
| 100 |
+
# Generate and save the inverse frequency buffer (non-trainable)
|
| 101 |
+
self.dim = dim
|
| 102 |
+
self.base = base
|
| 103 |
+
self.scale_base = scale_base
|
| 104 |
+
self.device = device
|
| 105 |
+
|
| 106 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
| 107 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 108 |
+
|
| 109 |
+
scale = (
|
| 110 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 111 |
+
if scale_base is not None
|
| 112 |
+
else None
|
| 113 |
+
)
|
| 114 |
+
self.register_buffer("scale", scale)
|
| 115 |
+
|
| 116 |
+
self._seq_len_cached = 0
|
| 117 |
+
self._cos_cached = None
|
| 118 |
+
self._sin_cached = None
|
| 119 |
+
self._cos_k_cached = None
|
| 120 |
+
self._sin_k_cached = None
|
| 121 |
+
|
| 122 |
+
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
|
| 123 |
+
# Reset the tables if the sequence length has changed,
|
| 124 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
| 125 |
+
seqlen = x.shape[1] + seqlen_offset
|
| 126 |
+
|
| 127 |
+
# Re-generate the inverse frequency buffer if it's not fp32
|
| 128 |
+
# (for instance if model.half() was called)
|
| 129 |
+
if self.inv_freq.dtype != "torch.float32":
|
| 130 |
+
self.inv_freq = 1.0 / (
|
| 131 |
+
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
|
| 135 |
+
self._seq_len_cached = seqlen
|
| 136 |
+
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
|
| 137 |
+
|
| 138 |
+
# Don't do einsum, it converts fp32 to fp16
|
| 139 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 140 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
|
| 141 |
+
if self.scale is None:
|
| 142 |
+
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
| 143 |
+
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
| 144 |
+
else:
|
| 145 |
+
power = (
|
| 146 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
| 147 |
+
) / self.scale_base
|
| 148 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 149 |
+
|
| 150 |
+
# We want the multiplication by scale to happen in fp32
|
| 151 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
| 152 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
| 153 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
| 154 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
| 155 |
+
|
| 156 |
+
def apply_rotary_emb_qkv(
|
| 157 |
+
self,
|
| 158 |
+
qkv: torch.FloatTensor,
|
| 159 |
+
sin: torch.FloatTensor,
|
| 160 |
+
cos: torch.FloatTensor,
|
| 161 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
| 162 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
| 163 |
+
) -> torch.FloatTensor:
|
| 164 |
+
_, seqlen, three, _, headdim = qkv.shape
|
| 165 |
+
assert three == 3
|
| 166 |
+
|
| 167 |
+
rotary_seqlen, rotary_dim = cos.shape
|
| 168 |
+
rotary_dim *= 2
|
| 169 |
+
assert rotary_dim <= headdim
|
| 170 |
+
assert seqlen <= rotary_seqlen
|
| 171 |
+
|
| 172 |
+
cos_k = cos if cos_k is None else cos_k
|
| 173 |
+
sin_k = sin if sin_k is None else sin_k
|
| 174 |
+
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
|
| 175 |
+
|
| 176 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
| 177 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
| 178 |
+
|
| 179 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
| 180 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
| 181 |
+
|
| 182 |
+
# Splits the queries and keys in half
|
| 183 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
| 184 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
| 185 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
| 186 |
+
|
| 187 |
+
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
| 188 |
+
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
| 189 |
+
|
| 190 |
+
# Computes the new keys and queries, recasting to original dtype
|
| 191 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
| 192 |
+
|
| 193 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
| 194 |
+
|
| 195 |
+
return torch.cat(
|
| 196 |
+
[
|
| 197 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
| 198 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
| 199 |
+
qkv[:, :, 2:3, :, :],
|
| 200 |
+
],
|
| 201 |
+
axis=2,
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 205 |
+
"""Perform the forward pass.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
| 209 |
+
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
| 210 |
+
|
| 211 |
+
Returns:
|
| 212 |
+
New `qkv` and the cached sinusoids.
|
| 213 |
+
|
| 214 |
+
"""
|
| 215 |
+
|
| 216 |
+
self._update_cos_sin_cache(qkv, seqlen_offset)
|
| 217 |
+
|
| 218 |
+
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
| 219 |
+
|
| 220 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
| 221 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
| 222 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
| 223 |
+
# Pre-allocate memory for key-values for inference.
|
| 224 |
+
num_heads, head_dim = kv.shape[-2:]
|
| 225 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
| 226 |
+
kv_cache = torch.empty(
|
| 227 |
+
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
| 228 |
+
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
| 229 |
+
)
|
| 230 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
| 231 |
+
else:
|
| 232 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
| 233 |
+
|
| 234 |
+
# Adjust key and value for inference
|
| 235 |
+
batch_start = inference_params.batch_size_offset
|
| 236 |
+
batch_end = batch_start + kv.shape[0]
|
| 237 |
+
sequence_start = inference_params.sequence_len_offset
|
| 238 |
+
sequence_end = sequence_start + kv.shape[1]
|
| 239 |
+
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
| 240 |
+
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
| 241 |
+
|
| 242 |
+
assert kv_cache is not None
|
| 243 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
| 244 |
+
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
| 245 |
+
return kv
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
class MLP(nn.Module):
|
| 249 |
+
"""Multi-Layer Perceptron.
|
| 250 |
+
|
| 251 |
+
Reference:
|
| 252 |
+
Attention Is All You Need.
|
| 253 |
+
https://arxiv.org/pdf/1706.03762.pdf.
|
| 254 |
+
|
| 255 |
+
"""
|
| 256 |
+
|
| 257 |
+
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
|
| 258 |
+
super().__init__()
|
| 259 |
+
|
| 260 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
| 261 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
| 262 |
+
|
| 263 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
| 264 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
| 265 |
+
|
| 266 |
+
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
| 267 |
+
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
| 268 |
+
self.act = ACT2FN[act_fn]
|
| 269 |
+
|
| 270 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
|
| 271 |
+
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
|
| 272 |
+
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
|
| 273 |
+
|
| 274 |
+
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
|
| 275 |
+
# Older version of `MLP` saved with different key names.
|
| 276 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
| 277 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
| 278 |
+
|
| 279 |
+
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
| 280 |
+
|
| 281 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 282 |
+
hidden_states = self.fc1(hidden_states)
|
| 283 |
+
hidden_states = self.act(hidden_states)
|
| 284 |
+
hidden_states = self.fc2(hidden_states)
|
| 285 |
+
|
| 286 |
+
return hidden_states
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class FusedMLP(nn.Module):
|
| 290 |
+
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
| 291 |
+
|
| 292 |
+
Reference:
|
| 293 |
+
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
| 294 |
+
|
| 295 |
+
"""
|
| 296 |
+
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
|
| 297 |
+
raise_on_missing: bool = False) -> None:
|
| 298 |
+
super().__init__()
|
| 299 |
+
|
| 300 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
| 301 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
| 302 |
+
|
| 303 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
| 304 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
| 305 |
+
|
| 306 |
+
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
|
| 307 |
+
activation = "gelu_approx" if act_fn in gelu_activations else "relu"
|
| 308 |
+
|
| 309 |
+
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
| 310 |
+
|
| 311 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 312 |
+
return self.mlp(hidden_states)
|
| 313 |
+
|
| 314 |
+
class SelfAttention(nn.Module):
|
| 315 |
+
"""Implement the scaled dot product attention with softmax.
|
| 316 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
| 317 |
+
Arguments
|
| 318 |
+
---------
|
| 319 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 320 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 321 |
+
runtime)
|
| 322 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 323 |
+
(default: 0.0)
|
| 324 |
+
"""
|
| 325 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
| 326 |
+
super().__init__()
|
| 327 |
+
self.causal = causal
|
| 328 |
+
self.softmax_scale = softmax_scale
|
| 329 |
+
self.drop = nn.Dropout(attention_dropout)
|
| 330 |
+
|
| 331 |
+
def forward(self, qkv, causal=None, key_padding_mask=None):
|
| 332 |
+
"""Implements the multihead softmax attention.
|
| 333 |
+
Arguments
|
| 334 |
+
---------
|
| 335 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
| 336 |
+
causal: if passed, will override self.causal
|
| 337 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
| 338 |
+
False means to mask out. (B, S)
|
| 339 |
+
"""
|
| 340 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
| 341 |
+
causal = self.causal if causal is None else causal
|
| 342 |
+
q, k, v = qkv.unbind(dim=2)
|
| 343 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 344 |
+
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
| 345 |
+
if key_padding_mask is not None:
|
| 346 |
+
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
|
| 347 |
+
device=scores.device)
|
| 348 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 349 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
| 350 |
+
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
| 351 |
+
if causal:
|
| 352 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
| 353 |
+
# So we have to construct the mask in float
|
| 354 |
+
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
| 355 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
| 356 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 357 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
| 358 |
+
attention_drop = self.drop(attention)
|
| 359 |
+
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
| 360 |
+
return output
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
class CrossAttention(nn.Module):
|
| 364 |
+
"""Implement the scaled dot product attention with softmax.
|
| 365 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
| 366 |
+
Arguments
|
| 367 |
+
---------
|
| 368 |
+
softmax_scale: The temperature to use for the softmax attention.
|
| 369 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
| 370 |
+
runtime)
|
| 371 |
+
attention_dropout: The dropout rate to apply to the attention
|
| 372 |
+
(default: 0.0)
|
| 373 |
+
"""
|
| 374 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
| 375 |
+
super().__init__()
|
| 376 |
+
self.causal = causal
|
| 377 |
+
self.softmax_scale = softmax_scale
|
| 378 |
+
self.drop = nn.Dropout(attention_dropout)
|
| 379 |
+
|
| 380 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
| 381 |
+
"""Implements the multihead softmax attention.
|
| 382 |
+
Arguments
|
| 383 |
+
---------
|
| 384 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
| 385 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
| 386 |
+
causal: if passed, will override self.causal
|
| 387 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
| 388 |
+
False means to mask out. (B, Sk)
|
| 389 |
+
"""
|
| 390 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
| 391 |
+
causal = self.causal if causal is None else causal
|
| 392 |
+
seqlen_k = kv.shape[1]
|
| 393 |
+
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
| 394 |
+
k, v = kv.unbind(dim=2)
|
| 395 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
| 396 |
+
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
| 397 |
+
if key_padding_mask is not None:
|
| 398 |
+
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
|
| 399 |
+
device=scores.device)
|
| 400 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
| 401 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
| 402 |
+
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
| 403 |
+
if causal:
|
| 404 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
| 405 |
+
# So we have to construct the mask in float
|
| 406 |
+
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
| 407 |
+
device=scores.device), 1)
|
| 408 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
| 409 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
| 410 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
| 411 |
+
attention_drop = self.drop(attention)
|
| 412 |
+
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
| 413 |
+
return output
|
| 414 |
+
|
| 415 |
+
def find_mha_dims(
|
| 416 |
+
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
| 417 |
+
) -> Tuple[int, int]:
|
| 418 |
+
"""Validate and return the number of heads and head dimension for multi-head attention.
|
| 419 |
+
|
| 420 |
+
Args:
|
| 421 |
+
config: Model configuration.
|
| 422 |
+
n_head: Number of heads.
|
| 423 |
+
head_dim: Head dimension.
|
| 424 |
+
|
| 425 |
+
Returns:
|
| 426 |
+
Number of heads and head dimension.
|
| 427 |
+
|
| 428 |
+
"""
|
| 429 |
+
|
| 430 |
+
assert all(
|
| 431 |
+
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
| 432 |
+
), "`config` must have `n_embd` and `n_head` attributes."
|
| 433 |
+
|
| 434 |
+
if head_dim is None:
|
| 435 |
+
assert (
|
| 436 |
+
config.n_embd % config.n_head == 0
|
| 437 |
+
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
| 438 |
+
|
| 439 |
+
if n_head is None and head_dim is None:
|
| 440 |
+
head_dim = config.n_embd // config.n_head
|
| 441 |
+
n_head = config.n_head
|
| 442 |
+
elif n_head is None or head_dim is None:
|
| 443 |
+
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
| 444 |
+
|
| 445 |
+
return n_head, head_dim
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
class MHA(nn.Module):
|
| 449 |
+
"""Multi-head attention layer.
|
| 450 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
| 451 |
+
|
| 452 |
+
def __init__(
|
| 453 |
+
self,
|
| 454 |
+
config: PretrainedConfig,
|
| 455 |
+
rotary_dim: Optional[int] = None,
|
| 456 |
+
n_head: Optional[int] = None,
|
| 457 |
+
head_dim: Optional[int] = None,
|
| 458 |
+
bias: Optional[bool] = True,
|
| 459 |
+
dropout: Optional[float] = 0.0,
|
| 460 |
+
softmax_scale: Optional[float] = None,
|
| 461 |
+
causal: Optional[bool] = True,
|
| 462 |
+
layer_idx: Optional[int] = None,
|
| 463 |
+
rotary_emb_scale_base: Optional[float] = None,
|
| 464 |
+
return_residual: Optional[bool] = False,
|
| 465 |
+
checkpointing: Optional[bool] = False,
|
| 466 |
+
device: Optional[str] = None,
|
| 467 |
+
dtype: Optional[torch.dtype] = None,
|
| 468 |
+
fused_dense: Optional[bool] = True,
|
| 469 |
+
flash_attn: Optional[bool] = True,
|
| 470 |
+
cutlass_attn: Optional[bool] = False,
|
| 471 |
+
flash_rotary: Optional[bool] = True,
|
| 472 |
+
raise_on_missing: Optional[bool] = False
|
| 473 |
+
) -> None:
|
| 474 |
+
super().__init__()
|
| 475 |
+
|
| 476 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
| 477 |
+
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
| 478 |
+
|
| 479 |
+
self.hidden_size = config.n_embd
|
| 480 |
+
self.n_head = n_head
|
| 481 |
+
self.head_dim = head_dim
|
| 482 |
+
self.op_size = n_head * head_dim
|
| 483 |
+
|
| 484 |
+
self.causal = causal
|
| 485 |
+
self.layer_idx = layer_idx
|
| 486 |
+
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
| 487 |
+
self.fused_dense = fused_dense
|
| 488 |
+
self.flash_attn = flash_attn
|
| 489 |
+
self.cutlass_attn = cutlass_attn
|
| 490 |
+
self.flash_rotary = flash_rotary
|
| 491 |
+
self.return_residual = return_residual
|
| 492 |
+
self.checkpointing = checkpointing
|
| 493 |
+
|
| 494 |
+
if self.rotary_emb_dim > 0:
|
| 495 |
+
rotary_kwargs = {"device": device}
|
| 496 |
+
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
| 497 |
+
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
| 498 |
+
|
| 499 |
+
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
| 500 |
+
else:
|
| 501 |
+
pass
|
| 502 |
+
|
| 503 |
+
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
|
| 504 |
+
self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)
|
| 505 |
+
|
| 506 |
+
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
| 507 |
+
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
| 508 |
+
|
| 509 |
+
def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
|
| 510 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
| 511 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
| 512 |
+
|
| 513 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
| 514 |
+
|
| 515 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
| 516 |
+
|
| 517 |
+
def forward(
|
| 518 |
+
self,
|
| 519 |
+
x: torch.FloatTensor,
|
| 520 |
+
x_kv: Optional[torch.FloatTensor] = None,
|
| 521 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
| 522 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
| 523 |
+
max_seqlen: Optional[int] = None,
|
| 524 |
+
mixer_subset: Optional[torch.LongTensor] = None,
|
| 525 |
+
past_cache: Optional[InferenceParams] = None,
|
| 526 |
+
**kwargs
|
| 527 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
| 528 |
+
"""Perform the forward pass.
|
| 529 |
+
|
| 530 |
+
Args:
|
| 531 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
| 532 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
| 533 |
+
is the is the sum of the sequence lengths in the batch.
|
| 534 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
| 535 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
| 536 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
| 537 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
| 538 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
| 539 |
+
FlashAttention.
|
| 540 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
| 541 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
| 542 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
| 543 |
+
about the CLS token in the last layer.
|
| 544 |
+
past_cache: For generation only.
|
| 545 |
+
|
| 546 |
+
Returns:
|
| 547 |
+
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
| 548 |
+
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
| 549 |
+
in the batch.
|
| 550 |
+
|
| 551 |
+
"""
|
| 552 |
+
|
| 553 |
+
if cu_seqlens is not None:
|
| 554 |
+
assert max_seqlen is not None
|
| 555 |
+
assert key_padding_mask is None
|
| 556 |
+
assert self.flash_attn
|
| 557 |
+
assert self.rotary_emb_dim == 0
|
| 558 |
+
|
| 559 |
+
if key_padding_mask is not None:
|
| 560 |
+
assert cu_seqlens is None
|
| 561 |
+
assert max_seqlen is None
|
| 562 |
+
assert not self.flash_attn
|
| 563 |
+
|
| 564 |
+
if past_cache is not None:
|
| 565 |
+
assert key_padding_mask is None
|
| 566 |
+
assert cu_seqlens is None and max_seqlen is None
|
| 567 |
+
|
| 568 |
+
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
| 569 |
+
|
| 570 |
+
assert x_kv is None and mixer_subset is None
|
| 571 |
+
|
| 572 |
+
qkv = self.Wqkv(x)
|
| 573 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
| 574 |
+
|
| 575 |
+
if past_cache is None:
|
| 576 |
+
if self.rotary_emb_dim > 0:
|
| 577 |
+
qkv = self.rotary_emb(qkv)
|
| 578 |
+
context = self.inner_attn(qkv, **attn_kwargs)
|
| 579 |
+
|
| 580 |
+
else:
|
| 581 |
+
if self.rotary_emb_dim > 0:
|
| 582 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
| 583 |
+
q = qkv[:, :, 0]
|
| 584 |
+
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
| 585 |
+
# If we're processing the prompt, causal=None (use self.causal).
|
| 586 |
+
# If we're decoding, then causal=False.
|
| 587 |
+
causal = None if past_cache.sequence_len_offset == 0 else False
|
| 588 |
+
context = self.inner_cross_attn(q, kv, causal=causal)
|
| 589 |
+
|
| 590 |
+
out = rearrange(context, "... h d -> ... (h d)")
|
| 591 |
+
out = self.out_proj(out)
|
| 592 |
+
|
| 593 |
+
return out if not self.return_residual else (out, x)
|
| 594 |
+
|
| 595 |
+
class ParallelBlock(nn.Module):
|
| 596 |
+
"""Parallel block.
|
| 597 |
+
|
| 598 |
+
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
| 599 |
+
|
| 600 |
+
"""
|
| 601 |
+
|
| 602 |
+
def __init__(
|
| 603 |
+
self,
|
| 604 |
+
config: PretrainedConfig,
|
| 605 |
+
mixer: Optional[Dict[str, Any]] = None,
|
| 606 |
+
mlp: Optional[Dict[str, Any]] = None,
|
| 607 |
+
block_idx: Optional[int] = None,
|
| 608 |
+
) -> None:
|
| 609 |
+
super().__init__()
|
| 610 |
+
|
| 611 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 612 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 613 |
+
self.block_idx = block_idx
|
| 614 |
+
|
| 615 |
+
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
|
| 616 |
+
mlp_cls = mlp.pop('mlp_cls')
|
| 617 |
+
if mlp_cls == 'fused_mlp':
|
| 618 |
+
self.mlp = FusedMLP(config=config, **mlp)
|
| 619 |
+
else:
|
| 620 |
+
self.mlp = MLP(config=config, **mlp)
|
| 621 |
+
|
| 622 |
+
def forward(self, hidden_states: torch.FloatTensor,
|
| 623 |
+
past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
| 624 |
+
residual = hidden_states
|
| 625 |
+
hidden_states = self.ln(hidden_states)
|
| 626 |
+
|
| 627 |
+
attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
|
| 628 |
+
if isinstance(attn_outputs, tuple):
|
| 629 |
+
attn_outputs = attn_outputs[0]
|
| 630 |
+
|
| 631 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
| 632 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
| 633 |
+
|
| 634 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
| 635 |
+
|
| 636 |
+
return hidden_states
|
| 637 |
+
|
| 638 |
+
class CausalLMHead(nn.Module):
|
| 639 |
+
"""Causal Language Modeling head.
|
| 640 |
+
|
| 641 |
+
Reference:
|
| 642 |
+
Improving Language Understanding by Generative Pre-Training.
|
| 643 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 644 |
+
|
| 645 |
+
"""
|
| 646 |
+
|
| 647 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
| 648 |
+
super().__init__()
|
| 649 |
+
|
| 650 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 651 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
| 652 |
+
|
| 653 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 654 |
+
hidden_states = self.ln(hidden_states)
|
| 655 |
+
logits = self.linear(hidden_states).to(torch.float32)
|
| 656 |
+
|
| 657 |
+
return logits
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
class CausalLMLoss(nn.Module):
|
| 661 |
+
"""Causal Language Modeling loss.
|
| 662 |
+
|
| 663 |
+
Reference:
|
| 664 |
+
Improving Language Understanding by Generative Pre-Training.
|
| 665 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
| 666 |
+
|
| 667 |
+
"""
|
| 668 |
+
|
| 669 |
+
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
| 670 |
+
super().__init__()
|
| 671 |
+
|
| 672 |
+
self.shift_labels = shift_labels
|
| 673 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 674 |
+
|
| 675 |
+
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
| 676 |
+
if self.shift_labels:
|
| 677 |
+
logits = logits[..., :-1, :].contiguous()
|
| 678 |
+
labels = labels[..., 1:].contiguous()
|
| 679 |
+
|
| 680 |
+
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
| 681 |
+
|
| 682 |
+
return loss
|
| 683 |
+
|
| 684 |
+
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
| 685 |
+
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
| 686 |
+
|
| 687 |
+
config_class = MixFormerSequentialConfig
|
| 688 |
+
base_model_prefix = "transformer"
|
| 689 |
+
supports_gradient_checkpointing = True
|
| 690 |
+
|
| 691 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
| 692 |
+
super().__init__(*inputs, **kwargs)
|
| 693 |
+
|
| 694 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
|
| 695 |
+
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
| 696 |
+
return {"input_ids": input_ids}
|
| 697 |
+
|
| 698 |
+
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
| 699 |
+
past_key_values = InferenceParams(
|
| 700 |
+
max_batch_size=input_ids.shape[0],
|
| 701 |
+
max_sequence_len=self.config.n_positions,
|
| 702 |
+
sequence_len_offset=0,
|
| 703 |
+
batch_size_offset=0,
|
| 704 |
+
fused_ft_kernel=False,
|
| 705 |
+
key_value_memory_dict={},
|
| 706 |
+
)
|
| 707 |
+
else:
|
| 708 |
+
# assume past_key_values has cached all but last token in input_ids
|
| 709 |
+
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
| 710 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
| 711 |
+
|
| 712 |
+
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
class MixFormerSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
| 716 |
+
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
| 717 |
+
|
| 718 |
+
_keys_to_ignore_on_load_missing = [""]
|
| 719 |
+
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
| 720 |
+
|
| 721 |
+
def __init__(self, config: MixFormerSequentialConfig) -> None:
|
| 722 |
+
super().__init__(config)
|
| 723 |
+
|
| 724 |
+
modules = [Embedding(config)]
|
| 725 |
+
block_config = config.architecture
|
| 726 |
+
|
| 727 |
+
if not isinstance(block_config, list):
|
| 728 |
+
block_config = [block_config for _ in range(config.n_layer)]
|
| 729 |
+
|
| 730 |
+
if config.n_layer != len(block_config):
|
| 731 |
+
config.n_layer = len(block_config)
|
| 732 |
+
|
| 733 |
+
for block_idx, block in enumerate(block_config):
|
| 734 |
+
# `block_cls` with `legacy` value is for backward compatibility
|
| 735 |
+
# `path` key is for backward compatibility
|
| 736 |
+
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
| 737 |
+
block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
| 738 |
+
|
| 739 |
+
block["block_idx"] = block_idx
|
| 740 |
+
modules.append(ParallelBlock(config, **block))
|
| 741 |
+
|
| 742 |
+
modules.append(CausalLMHead(config))
|
| 743 |
+
|
| 744 |
+
self.layers = nn.Sequential(*modules)
|
| 745 |
+
self.loss = CausalLMLoss()
|
| 746 |
+
|
| 747 |
+
self.post_init()
|
| 748 |
+
|
| 749 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
| 750 |
+
return self.layers[0].wte
|
| 751 |
+
|
| 752 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
| 753 |
+
self.layers[0].wte = new_embeddings
|
| 754 |
+
|
| 755 |
+
def get_output_embeddings(self) -> nn.Linear:
|
| 756 |
+
return self.layers[-1].linear
|
| 757 |
+
|
| 758 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
| 759 |
+
self.layers[-1].linear = new_embeddings
|
| 760 |
+
|
| 761 |
+
def forward(
|
| 762 |
+
self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None,
|
| 763 |
+
past_key_values: Optional[torch.FloatTensor] = None, **kwargs
|
| 764 |
+
) -> CausalLMOutputWithPast:
|
| 765 |
+
|
| 766 |
+
if not past_key_values:
|
| 767 |
+
lm_logits = self.layers(input_ids)
|
| 768 |
+
else:
|
| 769 |
+
hidden_layer = self.layers[0](input_ids)
|
| 770 |
+
for module in self.layers[1:-1]:
|
| 771 |
+
hidden_layer = module(hidden_layer, past_cache=past_key_values)
|
| 772 |
+
lm_logits = self.layers[-1](hidden_layer)
|
| 773 |
+
|
| 774 |
+
loss = None
|
| 775 |
+
if labels is not None:
|
| 776 |
+
loss = self.loss(lm_logits, labels)
|
| 777 |
+
|
| 778 |
+
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:853d337655539907af7065c571a1c84bc70cdc932182625223df61ca2c13804b
|
| 3 |
+
size 2829283838
|
rng_state_0.pth
ADDED
|
Binary file (14.5 kB). View file
|
|
|
rng_state_1.pth
ADDED
|
Binary file (14.5 kB). View file
|
|
|
trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
training_args.bin
ADDED
|
Binary file (6.33 kB). View file
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|