Update README.md
Browse files
README.md
CHANGED
|
@@ -1,202 +1,281 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: mistralai/Mistral-7B-
|
| 3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
### Model Description
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
## Bias, Risks, and Limitations
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
|
| 70 |
## How to Get Started with the Model
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
## Evaluation
|
| 104 |
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
### Testing Data, Factors & Metrics
|
| 108 |
|
| 109 |
#### Testing Data
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
|
| 121 |
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
## Environmental Impact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
#### Hardware
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
#### Software
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
| 200 |
### Framework versions
|
| 201 |
-
|
| 202 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: mistralai/Mistral-7B-v0.1
|
| 3 |
library_name: peft
|
| 4 |
+
license: mit
|
| 5 |
+
datasets:
|
| 6 |
+
- julioc-p/Question-Sparql
|
| 7 |
+
language:
|
| 8 |
+
- de
|
| 9 |
+
- en
|
| 10 |
+
metrics:
|
| 11 |
+
- f1
|
| 12 |
+
- precision
|
| 13 |
+
- recall
|
| 14 |
+
tags:
|
| 15 |
+
- code
|
| 16 |
+
- text-to-sparql
|
| 17 |
+
- sparql
|
| 18 |
+
- wikidata
|
| 19 |
+
- german
|
| 20 |
+
- qlora
|
| 21 |
---
|
| 22 |
|
| 23 |
+
This model is a fine-tuned version of `mistralai/Mistral-7B-v0.1` for generating SPARQL queries from German natural language questions, specifically targeting the Wikidata knowledge graph.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
## Model Details
|
| 26 |
|
| 27 |
### Model Description
|
| 28 |
|
| 29 |
+
It was fine-tuned using QLoRA with 4-bit quantization. It takes a German natural language question and corresponding entity/relationship context as input and aims to produce a SPARQL query for Wikidata. This model is part of experiments investigating continual multilingual pre-training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
- **Developed by:** Julio Cesar Perez Duran
|
| 32 |
+
- **Funded by :** DFKI
|
| 33 |
+
- **Model type:** Decoder-only Transformer-based language model
|
| 34 |
+
- **Language:** de (German)
|
| 35 |
+
- **License:** mit
|
| 36 |
+
- **Finetuned from model [optional]:** `mistralai/Mistral-7B-v0.1`
|
| 37 |
|
| 38 |
## Bias, Risks, and Limitations
|
| 39 |
|
| 40 |
+
- **Context Reliant:** Performance heavily relies on the accuracy and completeness of the provided entity/relationship context mappings.
|
| 41 |
+
- **Output Format:** V2 models sometimes generated extraneous text after the SPARQL query, requiring post-processing (extraction of content within ` ```sparql ... ``` ` delimiters).
|
| 42 |
+
- **EOS Token Generation:** Inconsistent End-Of-Sequence token generation was observed, possibly influenced by dataset packing during training.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
## How to Get Started with the Model
|
| 45 |
|
| 46 |
+
The following Python script provides an example of how to load the model and tokenizer to generate a SPARQL query.
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
import torch
|
| 50 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig
|
| 51 |
+
from peft import AutoPeftModelForCausalLM # Use AutoPeftModelForCausalLM for v2 models
|
| 52 |
+
import re
|
| 53 |
+
import json
|
| 54 |
+
|
| 55 |
+
# Model ID for the Mistral German v2 model
|
| 56 |
+
model_id = "julioc-p/mistral_txt_sparql_de_v2"
|
| 57 |
+
|
| 58 |
+
# Configuration for 4-bit quantization (as per v2 setup in thesis/script)
|
| 59 |
+
bnb_config = BitsAndBytesConfig(
|
| 60 |
+
load_in_4bit=True,
|
| 61 |
+
bnb_4bit_quant_type="nf4",
|
| 62 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 63 |
+
bnb_4bit_use_double_quant=True,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Load the model and tokenizer
|
| 67 |
+
print(f"Loading model: {model_id}")
|
| 68 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
| 69 |
+
model_id,
|
| 70 |
+
quantization_config=bnb_config,
|
| 71 |
+
device_map="auto"
|
| 72 |
+
)
|
| 73 |
+
print(f"Loading tokenizer for: {model_id}")
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 75 |
+
|
| 76 |
+
if tokenizer.pad_token is None:
|
| 77 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 78 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
| 79 |
+
|
| 80 |
+
sparql_pattern_strict = re.compile(
|
| 81 |
+
r"""
|
| 82 |
+
(SELECT|ASK|CONSTRUCT|DESCRIBE) # Match the starting keyword
|
| 83 |
+
.*? # Match any characters non-greedily
|
| 84 |
+
\} # Match the closing brace of the main block
|
| 85 |
+
( # Start of optional block for trailing clauses
|
| 86 |
+
(?: # Non-capturing group for one or more trailing clauses
|
| 87 |
+
\s*
|
| 88 |
+
(?: # Clause alternatives
|
| 89 |
+
(?:(?:GROUP|ORDER)\s+BY|HAVING)\s+.+?\s*(?=\s*(?:(?:GROUP|ORDER)\s+BY|HAVING|LIMIT|OFFSET|VALUES|$)) |
|
| 90 |
+
LIMIT\s+\d+ |
|
| 91 |
+
OFFSET\s+\d+ |
|
| 92 |
+
VALUES\s*(?:\{.*?\}|\w+|\(.*?\))
|
| 93 |
+
)
|
| 94 |
+
)* # Match zero or more clauses
|
| 95 |
+
)
|
| 96 |
+
""",
|
| 97 |
+
re.DOTALL | re.IGNORECASE | re.VERBOSE
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
def extract_sparql(text):
|
| 101 |
+
code_block_match = re.search(r"```(?:sparql)?\s*(.*?)\s*```", text, re.DOTALL | re.IGNORECASE)
|
| 102 |
+
if code_block_match:
|
| 103 |
+
text_to_search = code_block_match.group(1)
|
| 104 |
+
else:
|
| 105 |
+
text_to_search = text # Search directly if no markdown code block
|
| 106 |
+
|
| 107 |
+
match = sparql_pattern_strict.search(text_to_search)
|
| 108 |
+
if match:
|
| 109 |
+
return match.group(0).strip()
|
| 110 |
+
else:
|
| 111 |
+
fallback_match = re.search(r"(SELECT|ASK|CONSTRUCT|DESCRIBE).*?\}", text_to_search, re.DOTALL | re.IGNORECASE)
|
| 112 |
+
if fallback_match:
|
| 113 |
+
return fallback_match.group(0).strip()
|
| 114 |
+
return ""
|
| 115 |
+
|
| 116 |
+
# --- Example usage ---
|
| 117 |
+
question = "Wer war der amerikanische weibliche Angestellte des Barnard College?"
|
| 118 |
+
example_context_json_str = '''
|
| 119 |
+
{
|
| 120 |
+
"entitäten": {
|
| 121 |
+
"Barnard College": "Q167733",
|
| 122 |
+
"amerikanisch": "Q30",
|
| 123 |
+
"weiblich": "Q6581072",
|
| 124 |
+
"Angestellte": "Q5"
|
| 125 |
+
},
|
| 126 |
+
"beziehungen": {
|
| 127 |
+
"Instanz von": "P31",
|
| 128 |
+
"Arbeitgeber": "P108",
|
| 129 |
+
"Geschlecht": "P21",
|
| 130 |
+
"Land der Staatsbürgerschaft": "P27"
|
| 131 |
+
}
|
| 132 |
+
}
|
| 133 |
+
'''
|
| 134 |
+
# System prompt template for v2 models (German)
|
| 135 |
+
system_message_template = """Sie sind ein Experte für die Übersetzung von Text in SPARQL-Anfragen. Benutzer werden Ihnen Fragen auf Deutsch stellen, und Sie werden eine SPARQL-Anfrage basierend auf dem bereitgestellten Kontext generieren, der in ```sparql <Antwortanfrage>``` eingeschlossen ist.
|
| 136 |
+
KONTEXT:
|
| 137 |
+
{context}"""
|
| 138 |
+
|
| 139 |
+
# Format the system message with the actual context
|
| 140 |
+
formatted_system_message = system_message_template.format(context=example_context_json_str)
|
| 141 |
+
|
| 142 |
+
chat_template = [
|
| 143 |
+
{"role": "system", "content": formatted_system_message},
|
| 144 |
+
{"role": "user", "content": question},
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
inputs = tokenizer.apply_chat_template(
|
| 148 |
+
chat_template,
|
| 149 |
+
tokenize=True,
|
| 150 |
+
add_generation_prompt=True,
|
| 151 |
+
return_tensors="pt"
|
| 152 |
+
).to(model.device)
|
| 153 |
+
|
| 154 |
+
# Generate the output
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
outputs = model.generate(
|
| 157 |
+
input_ids=inputs.input_ids,
|
| 158 |
+
attention_mask=inputs.attention_mask,
|
| 159 |
+
max_new_tokens=512, # From your v2 generation script
|
| 160 |
+
do_sample=True, # From your v2 generation script
|
| 161 |
+
temperature=0.7, # Common for sampling
|
| 162 |
+
top_p=0.9, # Common for sampling
|
| 163 |
+
pad_token_id=tokenizer.pad_token_id
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Decode only the generated part
|
| 167 |
+
generated_text_full = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 168 |
+
# Extract only assistant's response (ChatML format specific extraction)
|
| 169 |
+
assistant_response_part = ""
|
| 170 |
+
if "<|im_start|>assistant" in generated_text_full: # Specific to ChatML after template application
|
| 171 |
+
assistant_response_part = generated_text_full.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip()
|
| 172 |
+
elif "assistant\n" in generated_text_full: # More generic if template output varies
|
| 173 |
+
assistant_response_part = generated_text_full.split("assistant\n")[-1].strip()
|
| 174 |
+
else:
|
| 175 |
+
input_length = inputs.input_ids.shape[1]
|
| 176 |
+
assistant_response_part = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True).strip()
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
cleaned_sparql = extract_sparql(assistant_response_part)
|
| 180 |
+
|
| 181 |
+
print(f"Frage: {question}")
|
| 182 |
+
print(f"Kontext: {example_context_json_str}")
|
| 183 |
+
print(f"Generierte SPARQL: {cleaned_sparql}")
|
| 184 |
+
print(f"Textausgabe (Assistent): {assistant_response_part}")
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
|
| 188 |
### Training Data
|
| 189 |
|
| 190 |
+
The model was fine-tuned on a subset of the `julioc-p/Question-Sparql` dataset. 80,000 German examples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
#### Training Hyperparameters
|
| 193 |
|
| 194 |
+
The following hyperparameters were used:
|
| 195 |
+
- **LoRA Configuration:**
|
| 196 |
+
- `r` (LoRA rank): 256
|
| 197 |
+
- `lora_alpha`: 128
|
| 198 |
+
- `lora_dropout`: 0.05
|
| 199 |
+
- `target_modules`: "all-linear"
|
| 200 |
+
- `task_type`: "CAUSAL_LM"
|
| 201 |
+
- **Training Arguments:**
|
| 202 |
+
- `num_train_epochs`: 3
|
| 203 |
+
- Effective batch size: 6 (per_device_train_batch_size=1, gradient_accumulation_steps=6)
|
| 204 |
+
- `optim`: "adamw_torch_fused"
|
| 205 |
+
- `learning_rate`: 2e-4
|
| 206 |
+
- `weight_decay`: 0.05
|
| 207 |
+
- `fp16`: True
|
| 208 |
+
- `max_grad_norm`: 0.3
|
| 209 |
+
- `warmup_ratio`: 0.03
|
| 210 |
+
- `lr_scheduler_type`: "constant"
|
| 211 |
+
- `packing`: True
|
| 212 |
+
- NEFTune `noise_alpha`: 5
|
| 213 |
+
- **BitsAndBytesConfig:**
|
| 214 |
+
- `load_in_4bit`: True
|
| 215 |
+
- `bnb_4bit_quant_type`: "nf4"
|
| 216 |
+
- `bnb_4bit_compute_dtype`: `torch.float16`
|
| 217 |
+
- `bnb_4bit_use_double_quant`: True
|
| 218 |
+
|
| 219 |
+
#### Speeds, Sizes, Times
|
| 220 |
+
- Mistral German v2 training took approx. 19-20 hours on a single NVIDIA V100 GPU.
|
| 221 |
|
| 222 |
## Evaluation
|
| 223 |
|
|
|
|
|
|
|
| 224 |
### Testing Data, Factors & Metrics
|
| 225 |
|
| 226 |
#### Testing Data
|
| 227 |
+
1. **QALD-10 test set (German):** Standardized benchmark. 394 German questions were evaluated for this model.
|
| 228 |
+
2. **v2 Test Set (German):** 10,000 German held-out examples from the `julioc-p/Question-Sparql` dataset, including context.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
#### Metrics
|
| 231 |
+
QALD standard macro-averaged F1-score, Precision, and Recall. Non-executable queries: P, R, F1 = 0. Executable Queries % tracked.
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
### Results
|
| 234 |
|
| 235 |
+
**On QALD-10 (German, N=394):**
|
| 236 |
+
- **Macro F1-Score:** 0.2595
|
| 237 |
+
- **Macro Precision:** 0.6419
|
| 238 |
+
- **Macro Recall:** 0.2632
|
| 239 |
+
- **Executable Queries:** 99.75% (393/394)
|
| 240 |
+
- **Correctness (Exact Match + Both Empty):** 25.13% (99/394)
|
| 241 |
+
- Correct (Exact Match): 23.86% (94/394)
|
| 242 |
+
- Correct (Both Empty): 1.27% (5/394)
|
| 243 |
+
|
| 244 |
+
**On v2 Test Set (German, N=10000):**
|
| 245 |
+
- **Macro F1-Score:** 0.7183
|
| 246 |
+
- **Macro Precision:** 0.8362
|
| 247 |
+
- **Macro Recall:** 0.7198
|
| 248 |
+
- **Executable Queries:** 97.27% (9727/10000)
|
| 249 |
+
- **Correctness (Exact Match + Both Empty):** 71.58% (7158/10000)
|
| 250 |
+
- Correct (Exact Match): 62.74% (6274/10000)
|
| 251 |
+
- Correct (Both Empty): 8.84% (884/10000)
|
| 252 |
|
| 253 |
## Environmental Impact
|
| 254 |
+
- **Hardware Type:** 1 x NVIDIA V100 32GB GPU
|
| 255 |
+
- **Hours used:** Approx. 19-20 hours for fine-tuning.
|
| 256 |
+
- **Cloud Provider:** DFKI HPC Cluster
|
| 257 |
+
- **Compute Region:** Germany
|
| 258 |
+
- **Carbon Emitted:** Approx. 2.96 kg CO2eq.
|
| 259 |
|
| 260 |
+
## Technical Specifications
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
### Compute Infrastructure
|
| 263 |
|
|
|
|
|
|
|
| 264 |
#### Hardware
|
| 265 |
+
- NVIDIA V100 GPU (32 GB RAM)
|
| 266 |
+
- Approx. 60 GB system RAM
|
| 267 |
|
| 268 |
#### Software
|
| 269 |
+
- Slurm, NVIDIA Enroot, CUDA 11.8.0
|
| 270 |
+
- Python, Hugging Face `transformers`, `peft` (0.13.2), `bitsandbytes`, `trl`, PyTorch.
|
| 271 |
|
| 272 |
+
## More Information
|
| 273 |
+
- **Thesis GitHub:** [https://github.com/julioc-p/cross-lingual-transferability-thesis](https://github.com/julioc-p/cross-lingual-transferability-thesis)
|
| 274 |
+
- **Dataset:** [https://huggingface.co/datasets/julioc-p/Question-Sparql](https://huggingface.co/datasets/julioc-p/Question-Sparql)
|
| 275 |
+
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
### Framework versions
|
| 277 |
+
- PEFT 0.13.2
|
| 278 |
+
- Transformers (`4.39.3`)
|
| 279 |
+
- BitsAndBytes (`0.43.0`)
|
| 280 |
+
- trl (`0.8.6`)
|
| 281 |
+
- PyTorch (`torch==2.1.0`)
|