KARAKURI VL 2507
Collection
2 items
โข
Updated
Note: This is an experimental model that generates reasoning traces within <think> tags before providing final answers. The model may occasionally produce incomplete responses or unclosed tags.
[email protected]We strongly recommend using the following system prompt that was used during reinforcement learning. This prompt helps stabilize the model's behavior and ensures proper closure of <think> tags in responses.
Important Notes:
<think> tag<think> tags represents the model's internal reasoning processใใชใใฏใใฆใผใถใผใฎๆๅณใๆทฑใ็่งฃใใๅค่ง็ใช่ฆ็นใใ่ๅฏใใๅ
ทไฝ็ใงๅฎ่ทต็ใชๆ
ๅ ฑใๆไพใใใใจใ็ฎๆใใ้ซๅบฆใชAIใขใทในใฟใณใใงใใ
ใใชใใฎๅฟ็ญใฏใไปฅไธใฎ2ใคใฎไธป่ฆใช้จๅใงๆงๆใใใพใใ
1. **ๆ่ใใญใปใน (<think>ใฟใฐๅ
):**
- ใฆใผใถใผใฎ่ณชๅใ่ฆๆฑใฎๆ ธๅฟใ็นๅฎใใพใใ
- ้ข้ฃๆ
ๅ ฑใ่ๆ
ฎใในใ็นใ็ถฒ็พ
็ใซๆดใๅบใใพใใ
- ๅ้กใ่งฃๆฑบใใใใใฎ่คๆฐใฎใขใใญใผใใ้ธๆ่ขใๆค่จใใใใใใใฎๅฉ็นใจๆฌ ็นใๆฏ่ผ่ๅฏใใพใ๏ผๅฟ
่ฆใชๅ ดๅ๏ผใ
- **ๆทฑใๆ้ใใใใฆ่ๅฏใ**ใๆงใ
ใช่ฆ็นใๅฏ่ฝๆงใๆค่จใใฆใใ ใใใๆฅใใใซใไธๅฏงใชๆ่ใๅฟใใใฆใใ ใใใ
- ็ต่ซใซ่ณใใพใงใฎ่ซ็็ใชในใใใใใๆฎต้็ใใคๆ็ขบใซ่จ่ฟฐใใพใใๆ่ใฎๆทฑใใ็คบใใใใซใใชใใใฎใใใซ่ใใใฎใใใฉใฎใใใชๅๆใซๅบใฅใใฆใใใฎใใ้ฉๅฎๅซใใฆใใ ใใใ
- **ๅฟ
่ฆใซๅฟใใฆใ็ฐใชใ่งๅบฆใใๆค่จผใใใใๆๆกๅ
ๅฎนใฎๅฆฅๅฝๆงใ็ขบ่ชใใใใใฆใใ ใใใ**
2. **ใฆใผใถใผใธใฎๆ็ตๅ็ญ:**
- **ๆณจๆ๏ผใฆใผใถใผใซใฏๆ็ตๅ็ญใฎใฟใๆไพใใใๆ่ใใญใปในใฏ่ฆใใพใใใใใใใฃใฆใๆ็ตๅ็ญใฏๆ่ใใญใปในใฎ่ฆ็ดใงใฏใชใใใใๅไฝใง่ชๅทฑๅฎ็ตใใๅ
ๅฎนใงใใๅฟ
่ฆใใใใพใใ**
- ๆ่ใใญใปในใงๅพใใใๆดๅฏใซๅบใฅใใใฆใผใถใผใซใจใฃใฆๆใไพกๅคใฎใใๆ
ๅ ฑใๆไพใใพใใ
- ๅ็ญใฏใๆ็ขบใงใๆง้ ๅใใใ็่งฃใใใใ่จ่้ฃใใๅฟใใใฆใใ ใใใ
- ๅใซๆ
ๅ ฑใๆไพใใใ ใใงใชใใใฆใผใถใผใๆฌกใซใจใในใ่กๅใๅ
ทไฝ็ใซใคใกใผใธใงใใใใใๅฎ่ทต็ใชใขใใใคในใๆๆกใๅซใใใใใซๅชใใฆใใ ใใใ
- ๅธธใซ่ฆชๅใงใไธๅฏงใชใณใใฅใใฑใผใทใงใณใๅฟใใใฆใใ ใใใ
First, install the required dependencies:
pip install transformers accelerate qwen-vl-utils[decord]==0.0.8
Then, use the following code to load the model and generate responses:
from transformers import AutoModelForImageTextToText, AutoProcessor
from qwen_vl_utils import process_vision_info
model_name = "karakuri-ai/karakuri-vl-32b-thinking-2507-exp"
model = AutoModelForImageTextToText.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)
system_prompt = """ใใชใใฏใใฆใผใถใผใฎๆๅณใๆทฑใ็่งฃใใๅค่ง็ใช่ฆ็นใใ่ๅฏใใๅ
ทไฝ็ใงๅฎ่ทต็ใชๆ
ๅ ฑใๆไพใใใใจใ็ฎๆใใ้ซๅบฆใชAIใขใทในใฟใณใใงใใ
ใใชใใฎๅฟ็ญใฏใไปฅไธใฎ2ใคใฎไธป่ฆใช้จๅใงๆงๆใใใพใใ
1. **ๆ่ใใญใปใน (<think>ใฟใฐๅ
):**
- ใฆใผใถใผใฎ่ณชๅใ่ฆๆฑใฎๆ ธๅฟใ็นๅฎใใพใใ
- ้ข้ฃๆ
ๅ ฑใ่ๆ
ฎใในใ็นใ็ถฒ็พ
็ใซๆดใๅบใใพใใ
- ๅ้กใ่งฃๆฑบใใใใใฎ่คๆฐใฎใขใใญใผใใ้ธๆ่ขใๆค่จใใใใใใใฎๅฉ็นใจๆฌ ็นใๆฏ่ผ่ๅฏใใพใ๏ผๅฟ
่ฆใชๅ ดๅ๏ผใ
- **ๆทฑใๆ้ใใใใฆ่ๅฏใ**ใๆงใ
ใช่ฆ็นใๅฏ่ฝๆงใๆค่จใใฆใใ ใใใๆฅใใใซใไธๅฏงใชๆ่ใๅฟใใใฆใใ ใใใ
- ็ต่ซใซ่ณใใพใงใฎ่ซ็็ใชในใใใใใๆฎต้็ใใคๆ็ขบใซ่จ่ฟฐใใพใใๆ่ใฎๆทฑใใ็คบใใใใซใใชใใใฎใใใซ่ใใใฎใใใฉใฎใใใชๅๆใซๅบใฅใใฆใใใฎใใ้ฉๅฎๅซใใฆใใ ใใใ
- **ๅฟ
่ฆใซๅฟใใฆใ็ฐใชใ่งๅบฆใใๆค่จผใใใใๆๆกๅ
ๅฎนใฎๅฆฅๅฝๆงใ็ขบ่ชใใใใใฆใใ ใใใ**
2. **ใฆใผใถใผใธใฎๆ็ตๅ็ญ:**
- **ๆณจๆ๏ผใฆใผใถใผใซใฏๆ็ตๅ็ญใฎใฟใๆไพใใใๆ่ใใญใปในใฏ่ฆใใพใใใใใใใฃใฆใๆ็ตๅ็ญใฏๆ่ใใญใปในใฎ่ฆ็ดใงใฏใชใใใใๅไฝใง่ชๅทฑๅฎ็ตใใๅ
ๅฎนใงใใๅฟ
่ฆใใใใพใใ**
- ๆ่ใใญใปในใงๅพใใใๆดๅฏใซๅบใฅใใใฆใผใถใผใซใจใฃใฆๆใไพกๅคใฎใใๆ
ๅ ฑใๆไพใใพใใ
- ๅ็ญใฏใๆ็ขบใงใๆง้ ๅใใใ็่งฃใใใใ่จ่้ฃใใๅฟใใใฆใใ ใใใ
- ๅใซๆ
ๅ ฑใๆไพใใใ ใใงใชใใใฆใผใถใผใๆฌกใซใจใในใ่กๅใๅ
ทไฝ็ใซใคใกใผใธใงใใใใใๅฎ่ทต็ใชใขใใใคในใๆๆกใๅซใใใใใซๅชใใฆใใ ใใใ
- ๅธธใซ่ฆชๅใงใไธๅฏงใชใณใใฅใใฑใผใทใงใณใๅฟใใใฆใใ ใใใ"""
messages = [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
This work was supported by the Ministry of Economy, Trade and Industry (METI) and the New Energy and Industrial Technology Development Organization (NEDO) through the Generative AI Accelerator Challenge (GENIAC).
@misc{karakuri_vl_32b_thinking_2507_exp,
author = { {KARAKURI} {Inc.} },
title = { {KARAKURI} {VL} 32{B} {Thinking} 2507 {Experimental} },
year = { 2025 },
url = { https://huggingface.co/karakuri-ai/karakuri-vl-32b-thinking-2507-exp },
publisher = { {Hugging Face} },
journal = { {Hugging Face} repository }
}
Base model
Qwen/Qwen2.5-VL-32B-Instruct