Add benchmark
Browse files- benchmark.py +304 -0
- benchmark_flash_sdpa.py +0 -301
benchmark.py
ADDED
|
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Benchmark causal mask performance scaling with sequence length"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import time
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
from typing import List
|
| 9 |
+
import kernels
|
| 10 |
+
|
| 11 |
+
metal_flash_sdpa = kernels.get_kernel("kernels-community/metal-flash-sdpa")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def create_cu_seqlens(seq_lengths: List[int]) -> torch.Tensor:
|
| 15 |
+
"""Create cumulative sequence lengths tensor."""
|
| 16 |
+
cu_seqlens = [0]
|
| 17 |
+
for length in seq_lengths:
|
| 18 |
+
cu_seqlens.append(cu_seqlens[-1] + length)
|
| 19 |
+
return torch.tensor(cu_seqlens, dtype=torch.int32, device="mps")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def benchmark_flash_sdpa_causal(
|
| 23 |
+
batch_size: int,
|
| 24 |
+
num_heads: int,
|
| 25 |
+
seq_len: int,
|
| 26 |
+
head_dim: int,
|
| 27 |
+
dtype: torch.dtype,
|
| 28 |
+
num_iterations: int = 20,
|
| 29 |
+
) -> float:
|
| 30 |
+
"""Benchmark Flash SDPA with causal mask"""
|
| 31 |
+
|
| 32 |
+
seq_lengths = [seq_len] * batch_size
|
| 33 |
+
cu_seqlens = create_cu_seqlens(seq_lengths)
|
| 34 |
+
total_tokens = sum(seq_lengths)
|
| 35 |
+
|
| 36 |
+
# Create input tensors
|
| 37 |
+
query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 38 |
+
key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 39 |
+
value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 40 |
+
out = torch.empty_like(query)
|
| 41 |
+
|
| 42 |
+
scale = 1.0 / (head_dim**0.5)
|
| 43 |
+
|
| 44 |
+
# Warmup
|
| 45 |
+
for _ in range(5):
|
| 46 |
+
metal_flash_sdpa.flash_attention_varlen(
|
| 47 |
+
out=out,
|
| 48 |
+
query=query,
|
| 49 |
+
key=key,
|
| 50 |
+
value=value,
|
| 51 |
+
cu_seqlens_q=cu_seqlens,
|
| 52 |
+
cu_seqlens_k=cu_seqlens,
|
| 53 |
+
max_seqlen_q=seq_len,
|
| 54 |
+
max_seqlen_k=seq_len,
|
| 55 |
+
do_causal=True,
|
| 56 |
+
scale=scale,
|
| 57 |
+
softcapping=1.0,
|
| 58 |
+
)
|
| 59 |
+
torch.mps.synchronize()
|
| 60 |
+
|
| 61 |
+
# Benchmark
|
| 62 |
+
start_time = time.perf_counter()
|
| 63 |
+
for _ in range(num_iterations):
|
| 64 |
+
metal_flash_sdpa.flash_attention_varlen(
|
| 65 |
+
out=out,
|
| 66 |
+
query=query,
|
| 67 |
+
key=key,
|
| 68 |
+
value=value,
|
| 69 |
+
cu_seqlens_q=cu_seqlens,
|
| 70 |
+
cu_seqlens_k=cu_seqlens,
|
| 71 |
+
max_seqlen_q=seq_len,
|
| 72 |
+
max_seqlen_k=seq_len,
|
| 73 |
+
do_causal=True,
|
| 74 |
+
scale=scale,
|
| 75 |
+
softcapping=1.0,
|
| 76 |
+
)
|
| 77 |
+
torch.mps.synchronize()
|
| 78 |
+
end_time = time.perf_counter()
|
| 79 |
+
|
| 80 |
+
return (end_time - start_time) * 1000 / num_iterations
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def benchmark_naive_sdpa_causal(
|
| 84 |
+
batch_size: int,
|
| 85 |
+
num_heads: int,
|
| 86 |
+
seq_len: int,
|
| 87 |
+
head_dim: int,
|
| 88 |
+
dtype: torch.dtype,
|
| 89 |
+
num_iterations: int = 20,
|
| 90 |
+
) -> float:
|
| 91 |
+
"""Benchmark naive SDPA with causal mask"""
|
| 92 |
+
|
| 93 |
+
# Create input tensors
|
| 94 |
+
query = torch.randn(
|
| 95 |
+
batch_size, num_heads, seq_len, head_dim, dtype=dtype, device="mps"
|
| 96 |
+
)
|
| 97 |
+
key = torch.randn(
|
| 98 |
+
batch_size, num_heads, seq_len, head_dim, dtype=dtype, device="mps"
|
| 99 |
+
)
|
| 100 |
+
value = torch.randn(
|
| 101 |
+
batch_size, num_heads, seq_len, head_dim, dtype=dtype, device="mps"
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
scale = 1.0 / (head_dim**0.5)
|
| 105 |
+
|
| 106 |
+
# Precompute causal mask
|
| 107 |
+
mask = torch.triu(torch.ones(seq_len, seq_len, device="mps"), diagonal=1).bool()
|
| 108 |
+
|
| 109 |
+
# Warmup
|
| 110 |
+
for _ in range(5):
|
| 111 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) * scale
|
| 112 |
+
scores = scores.masked_fill(mask, float("-inf"))
|
| 113 |
+
attn_weights = torch.softmax(scores, dim=-1)
|
| 114 |
+
out = torch.matmul(attn_weights, value)
|
| 115 |
+
torch.mps.synchronize()
|
| 116 |
+
|
| 117 |
+
# Benchmark
|
| 118 |
+
start_time = time.perf_counter()
|
| 119 |
+
for _ in range(num_iterations):
|
| 120 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) * scale
|
| 121 |
+
scores = scores.masked_fill(mask, float("-inf"))
|
| 122 |
+
attn_weights = torch.softmax(scores, dim=-1)
|
| 123 |
+
out = torch.matmul(attn_weights, value)
|
| 124 |
+
torch.mps.synchronize()
|
| 125 |
+
end_time = time.perf_counter()
|
| 126 |
+
|
| 127 |
+
return (end_time - start_time) * 1000 / num_iterations
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def run_scaling_benchmark():
|
| 131 |
+
"""Run causal mask scaling benchmark"""
|
| 132 |
+
|
| 133 |
+
print("=" * 80)
|
| 134 |
+
print("Causal Mask Performance Scaling Benchmark")
|
| 135 |
+
print("Batch Size: 4, Head Dimension: 64")
|
| 136 |
+
print("=" * 80)
|
| 137 |
+
|
| 138 |
+
# Configuration
|
| 139 |
+
batch_size = 4
|
| 140 |
+
num_heads = 16
|
| 141 |
+
head_dim = 64
|
| 142 |
+
dtype = torch.float16
|
| 143 |
+
|
| 144 |
+
# Sequence lengths from 512 to 4096
|
| 145 |
+
seq_lengths = [512, 768, 1024, 1536, 2048, 3072, 4096]
|
| 146 |
+
|
| 147 |
+
flash_times = []
|
| 148 |
+
naive_times = []
|
| 149 |
+
speedups = []
|
| 150 |
+
|
| 151 |
+
print(f"{'Seq Len':<8} {'Flash (ms)':<12} {'Naive (ms)':<12} {'Speedup':<10}")
|
| 152 |
+
print("-" * 50)
|
| 153 |
+
|
| 154 |
+
for seq_len in seq_lengths:
|
| 155 |
+
# Benchmark Flash SDPA
|
| 156 |
+
flash_time = benchmark_flash_sdpa_causal(
|
| 157 |
+
batch_size, num_heads, seq_len, head_dim, dtype
|
| 158 |
+
)
|
| 159 |
+
flash_times.append(flash_time)
|
| 160 |
+
|
| 161 |
+
# Benchmark Naive SDPA
|
| 162 |
+
naive_time = benchmark_naive_sdpa_causal(
|
| 163 |
+
batch_size, num_heads, seq_len, head_dim, dtype
|
| 164 |
+
)
|
| 165 |
+
naive_times.append(naive_time)
|
| 166 |
+
|
| 167 |
+
speedup = naive_time / flash_time
|
| 168 |
+
speedups.append(speedup)
|
| 169 |
+
|
| 170 |
+
print(f"{seq_len:<8} {flash_time:<12.2f} {naive_time:<12.2f} {speedup:<10.2f}x")
|
| 171 |
+
|
| 172 |
+
return seq_lengths, flash_times, naive_times, speedups
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def create_line_plot(seq_lengths, flash_times, naive_times, speedups):
|
| 176 |
+
"""Create line graph visualization"""
|
| 177 |
+
|
| 178 |
+
# Create figure with single plot
|
| 179 |
+
fig, ax = plt.subplots(1, 1, figsize=(12, 8))
|
| 180 |
+
fig.suptitle(
|
| 181 |
+
"Causal Mask Performance Scaling\n(Batch Size: 4, Head Dimension: 64)",
|
| 182 |
+
fontsize=16,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# Plot execution times
|
| 186 |
+
ax.plot(
|
| 187 |
+
seq_lengths,
|
| 188 |
+
flash_times,
|
| 189 |
+
marker="o",
|
| 190 |
+
linewidth=3,
|
| 191 |
+
markersize=10,
|
| 192 |
+
label="Flash SDPA",
|
| 193 |
+
color="blue",
|
| 194 |
+
)
|
| 195 |
+
ax.plot(
|
| 196 |
+
seq_lengths,
|
| 197 |
+
naive_times,
|
| 198 |
+
marker="s",
|
| 199 |
+
linewidth=3,
|
| 200 |
+
markersize=10,
|
| 201 |
+
label="Naive SDPA",
|
| 202 |
+
color="red",
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
ax.set_xlabel("Sequence Length", fontsize=14)
|
| 206 |
+
ax.set_ylabel("Time (ms)", fontsize=14)
|
| 207 |
+
ax.set_title("Execution Time vs Sequence Length", fontsize=16)
|
| 208 |
+
ax.grid(True, alpha=0.3)
|
| 209 |
+
ax.legend(fontsize=12)
|
| 210 |
+
|
| 211 |
+
# Add value annotations for all points
|
| 212 |
+
for i, (seq_len, flash_time, naive_time) in enumerate(
|
| 213 |
+
zip(seq_lengths, flash_times, naive_times)
|
| 214 |
+
):
|
| 215 |
+
ax.annotate(
|
| 216 |
+
f"{flash_time:.1f}ms",
|
| 217 |
+
xy=(seq_len, flash_time),
|
| 218 |
+
xytext=(5, 5),
|
| 219 |
+
textcoords="offset points",
|
| 220 |
+
fontsize=10,
|
| 221 |
+
color="blue",
|
| 222 |
+
)
|
| 223 |
+
ax.annotate(
|
| 224 |
+
f"{naive_time:.1f}ms",
|
| 225 |
+
xy=(seq_len, naive_time),
|
| 226 |
+
xytext=(5, 5),
|
| 227 |
+
textcoords="offset points",
|
| 228 |
+
fontsize=10,
|
| 229 |
+
color="red",
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
# Set axis limits to better show the data
|
| 233 |
+
ax.set_xlim(seq_lengths[0] - 100, seq_lengths[-1] + 100)
|
| 234 |
+
ax.set_ylim(0, max(naive_times) * 1.1)
|
| 235 |
+
|
| 236 |
+
plt.tight_layout()
|
| 237 |
+
plt.savefig("benchmark.png", dpi=300, bbox_inches="tight")
|
| 238 |
+
plt.show()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
def print_analysis(seq_lengths, flash_times, naive_times, speedups):
|
| 242 |
+
"""Print detailed analysis of the results"""
|
| 243 |
+
|
| 244 |
+
print("\n" + "=" * 80)
|
| 245 |
+
print("DETAILED ANALYSIS")
|
| 246 |
+
print("=" * 80)
|
| 247 |
+
|
| 248 |
+
# Performance scaling analysis
|
| 249 |
+
print("\n1. Performance Scaling:")
|
| 250 |
+
print(
|
| 251 |
+
f" • Flash SDPA: {flash_times[0]:.2f}ms → {flash_times[-1]:.2f}ms ({flash_times[-1] / flash_times[0]:.1f}x increase)"
|
| 252 |
+
)
|
| 253 |
+
print(
|
| 254 |
+
f" • Naive SDPA: {naive_times[0]:.2f}ms → {naive_times[-1]:.2f}ms ({naive_times[-1] / naive_times[0]:.1f}x increase)"
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Speedup analysis
|
| 258 |
+
print("\n2. Speedup Analysis:")
|
| 259 |
+
print(f" • Average Speedup: {np.mean(speedups):.2f}x")
|
| 260 |
+
print(
|
| 261 |
+
f" • Max Speedup: {np.max(speedups):.2f}x (at seq_len={seq_lengths[np.argmax(speedups)]})"
|
| 262 |
+
)
|
| 263 |
+
print(
|
| 264 |
+
f" • Min Speedup: {np.min(speedups):.2f}x (at seq_len={seq_lengths[np.argmin(speedups)]})"
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
# Efficiency analysis
|
| 268 |
+
print("\n3. Efficiency Analysis:")
|
| 269 |
+
speedup_improvement = speedups[-1] / speedups[0]
|
| 270 |
+
print(f" • Speedup improvement from 512→4096: {speedup_improvement:.2f}x")
|
| 271 |
+
|
| 272 |
+
if speedup_improvement > 1.1:
|
| 273 |
+
print(" • Flash SDPA becomes MORE efficient at longer sequences")
|
| 274 |
+
elif speedup_improvement < 0.9:
|
| 275 |
+
print(" • Flash SDPA becomes LESS efficient at longer sequences")
|
| 276 |
+
else:
|
| 277 |
+
print(" • Flash SDPA maintains consistent efficiency across sequence lengths")
|
| 278 |
+
|
| 279 |
+
# Memory complexity analysis
|
| 280 |
+
print("\n4. Theoretical Complexity:")
|
| 281 |
+
print(f" • Sequence length increased by: {seq_lengths[-1] / seq_lengths[0]:.1f}x")
|
| 282 |
+
print(
|
| 283 |
+
f" • Theoretical O(n²) complexity increase: {(seq_lengths[-1] / seq_lengths[0]) ** 2:.1f}x"
|
| 284 |
+
)
|
| 285 |
+
print(f" • Actual Flash SDPA increase: {flash_times[-1] / flash_times[0]:.1f}x")
|
| 286 |
+
efficiency_ratio = (flash_times[-1] / flash_times[0]) / (
|
| 287 |
+
(seq_lengths[-1] / seq_lengths[0]) ** 2
|
| 288 |
+
)
|
| 289 |
+
print(f" • Flash SDPA efficiency ratio: {efficiency_ratio:.3f} (lower is better)")
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def main():
|
| 293 |
+
# Run the scaling benchmark
|
| 294 |
+
seq_lengths, flash_times, naive_times, speedups = run_scaling_benchmark()
|
| 295 |
+
|
| 296 |
+
# Create line plot visualization
|
| 297 |
+
create_line_plot(seq_lengths, flash_times, naive_times, speedups)
|
| 298 |
+
|
| 299 |
+
# Print detailed analysis
|
| 300 |
+
print_analysis(seq_lengths, flash_times, naive_times, speedups)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
if __name__ == "__main__":
|
| 304 |
+
main()
|
benchmark_flash_sdpa.py
DELETED
|
@@ -1,301 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""Benchmark script for metal-sdpa-flash (Flash SDPA)"""
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
import time
|
| 6 |
-
import metal_flash_sdpa
|
| 7 |
-
from typing import List, Tuple
|
| 8 |
-
import numpy as np
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
def create_cu_seqlens(seq_lengths: List[int]) -> torch.Tensor:
|
| 12 |
-
"""Create cumulative sequence lengths tensor."""
|
| 13 |
-
cu_seqlens = [0]
|
| 14 |
-
for length in seq_lengths:
|
| 15 |
-
cu_seqlens.append(cu_seqlens[-1] + length)
|
| 16 |
-
return torch.tensor(cu_seqlens, dtype=torch.int32, device="mps")
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def warmup(func, *args, num_warmup=10):
|
| 20 |
-
"""Warmup the GPU by running the function multiple times"""
|
| 21 |
-
for _ in range(num_warmup):
|
| 22 |
-
func(*args)
|
| 23 |
-
torch.mps.synchronize()
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def benchmark_flash_sdpa(
|
| 27 |
-
batch_size: int,
|
| 28 |
-
num_heads: int,
|
| 29 |
-
seq_len: int,
|
| 30 |
-
head_dim: int,
|
| 31 |
-
dtype: torch.dtype,
|
| 32 |
-
causal: bool = False,
|
| 33 |
-
num_iterations: int = 100,
|
| 34 |
-
) -> float:
|
| 35 |
-
"""Benchmark Flash SDPA with given parameters"""
|
| 36 |
-
|
| 37 |
-
# Create sequence lengths (all equal for fair comparison)
|
| 38 |
-
seq_lengths = [seq_len] * batch_size
|
| 39 |
-
cu_seqlens = create_cu_seqlens(seq_lengths)
|
| 40 |
-
total_tokens = sum(seq_lengths)
|
| 41 |
-
|
| 42 |
-
# Create input tensors in Flash format (total_tokens, num_heads, head_dim)
|
| 43 |
-
query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 44 |
-
key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 45 |
-
value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 46 |
-
out = torch.empty_like(query)
|
| 47 |
-
|
| 48 |
-
scale = 1.0 / (head_dim ** 0.5)
|
| 49 |
-
|
| 50 |
-
# Define the function to benchmark
|
| 51 |
-
def run_flash_sdpa():
|
| 52 |
-
metal_flash_sdpa.flash_attention_varlen(
|
| 53 |
-
out=out,
|
| 54 |
-
query=query,
|
| 55 |
-
key=key,
|
| 56 |
-
value=value,
|
| 57 |
-
cu_seqlens_q=cu_seqlens,
|
| 58 |
-
cu_seqlens_k=cu_seqlens,
|
| 59 |
-
max_seqlen_q=seq_len,
|
| 60 |
-
max_seqlen_k=seq_len,
|
| 61 |
-
mask=None,
|
| 62 |
-
do_causal=causal,
|
| 63 |
-
scale=scale,
|
| 64 |
-
softcapping=1.0,
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
# Warmup
|
| 68 |
-
warmup(run_flash_sdpa, num_warmup=10)
|
| 69 |
-
|
| 70 |
-
# Benchmark
|
| 71 |
-
torch.mps.synchronize()
|
| 72 |
-
start_time = time.perf_counter()
|
| 73 |
-
|
| 74 |
-
for _ in range(num_iterations):
|
| 75 |
-
run_flash_sdpa()
|
| 76 |
-
|
| 77 |
-
torch.mps.synchronize()
|
| 78 |
-
end_time = time.perf_counter()
|
| 79 |
-
|
| 80 |
-
avg_time_ms = (end_time - start_time) * 1000 / num_iterations
|
| 81 |
-
return avg_time_ms
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def benchmark_flash_gqa(
|
| 85 |
-
batch_size: int,
|
| 86 |
-
num_heads_q: int,
|
| 87 |
-
num_heads_kv: int,
|
| 88 |
-
seq_len: int,
|
| 89 |
-
head_dim: int,
|
| 90 |
-
dtype: torch.dtype,
|
| 91 |
-
causal: bool = False,
|
| 92 |
-
num_iterations: int = 100,
|
| 93 |
-
) -> float:
|
| 94 |
-
"""Benchmark Flash Attention with Grouped Query Attention"""
|
| 95 |
-
|
| 96 |
-
# Create sequence lengths
|
| 97 |
-
seq_lengths = [seq_len] * batch_size
|
| 98 |
-
cu_seqlens = create_cu_seqlens(seq_lengths)
|
| 99 |
-
total_tokens = sum(seq_lengths)
|
| 100 |
-
|
| 101 |
-
# Create input tensors with different head counts
|
| 102 |
-
query = torch.randn(total_tokens, num_heads_q, head_dim, dtype=dtype, device="mps")
|
| 103 |
-
key = torch.randn(total_tokens, num_heads_kv, head_dim, dtype=dtype, device="mps")
|
| 104 |
-
value = torch.randn(total_tokens, num_heads_kv, head_dim, dtype=dtype, device="mps")
|
| 105 |
-
out = torch.empty_like(query)
|
| 106 |
-
|
| 107 |
-
scale = 1.0 / (head_dim ** 0.5)
|
| 108 |
-
|
| 109 |
-
# Define the function to benchmark
|
| 110 |
-
def run_flash_gqa():
|
| 111 |
-
metal_flash_sdpa.flash_attention_varlen(
|
| 112 |
-
out=out,
|
| 113 |
-
query=query,
|
| 114 |
-
key=key,
|
| 115 |
-
value=value,
|
| 116 |
-
cu_seqlens_q=cu_seqlens,
|
| 117 |
-
cu_seqlens_k=cu_seqlens,
|
| 118 |
-
max_seqlen_q=seq_len,
|
| 119 |
-
max_seqlen_k=seq_len,
|
| 120 |
-
mask=None,
|
| 121 |
-
do_causal=causal,
|
| 122 |
-
scale=scale,
|
| 123 |
-
softcapping=1.0,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
# Warmup
|
| 127 |
-
warmup(run_flash_gqa, num_warmup=10)
|
| 128 |
-
|
| 129 |
-
# Benchmark
|
| 130 |
-
torch.mps.synchronize()
|
| 131 |
-
start_time = time.perf_counter()
|
| 132 |
-
|
| 133 |
-
for _ in range(num_iterations):
|
| 134 |
-
run_flash_gqa()
|
| 135 |
-
|
| 136 |
-
torch.mps.synchronize()
|
| 137 |
-
end_time = time.perf_counter()
|
| 138 |
-
|
| 139 |
-
avg_time_ms = (end_time - start_time) * 1000 / num_iterations
|
| 140 |
-
return avg_time_ms
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def benchmark_variable_length(
|
| 144 |
-
seq_lengths: List[int],
|
| 145 |
-
num_heads: int,
|
| 146 |
-
head_dim: int,
|
| 147 |
-
dtype: torch.dtype,
|
| 148 |
-
causal: bool = False,
|
| 149 |
-
num_iterations: int = 100,
|
| 150 |
-
) -> float:
|
| 151 |
-
"""Benchmark Flash Attention with variable sequence lengths"""
|
| 152 |
-
|
| 153 |
-
cu_seqlens = create_cu_seqlens(seq_lengths)
|
| 154 |
-
total_tokens = sum(seq_lengths)
|
| 155 |
-
max_seqlen = max(seq_lengths)
|
| 156 |
-
|
| 157 |
-
# Create input tensors
|
| 158 |
-
query = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 159 |
-
key = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 160 |
-
value = torch.randn(total_tokens, num_heads, head_dim, dtype=dtype, device="mps")
|
| 161 |
-
out = torch.empty_like(query)
|
| 162 |
-
|
| 163 |
-
scale = 1.0 / (head_dim ** 0.5)
|
| 164 |
-
|
| 165 |
-
# Define the function to benchmark
|
| 166 |
-
def run_varlen():
|
| 167 |
-
metal_flash_sdpa.flash_attention_varlen(
|
| 168 |
-
out=out,
|
| 169 |
-
query=query,
|
| 170 |
-
key=key,
|
| 171 |
-
value=value,
|
| 172 |
-
cu_seqlens_q=cu_seqlens,
|
| 173 |
-
cu_seqlens_k=cu_seqlens,
|
| 174 |
-
max_seqlen_q=max_seqlen,
|
| 175 |
-
max_seqlen_k=max_seqlen,
|
| 176 |
-
mask=None,
|
| 177 |
-
do_causal=causal,
|
| 178 |
-
scale=scale,
|
| 179 |
-
softcapping=1.0,
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
# Warmup
|
| 183 |
-
warmup(run_varlen, num_warmup=10)
|
| 184 |
-
|
| 185 |
-
# Benchmark
|
| 186 |
-
torch.mps.synchronize()
|
| 187 |
-
start_time = time.perf_counter()
|
| 188 |
-
|
| 189 |
-
for _ in range(num_iterations):
|
| 190 |
-
run_varlen()
|
| 191 |
-
|
| 192 |
-
torch.mps.synchronize()
|
| 193 |
-
end_time = time.perf_counter()
|
| 194 |
-
|
| 195 |
-
avg_time_ms = (end_time - start_time) * 1000 / num_iterations
|
| 196 |
-
return avg_time_ms
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
def main():
|
| 200 |
-
print("=" * 80)
|
| 201 |
-
print("Metal Flash SDPA Benchmark")
|
| 202 |
-
print("=" * 80)
|
| 203 |
-
|
| 204 |
-
# Test configurations (matching the plain SDPA benchmark)
|
| 205 |
-
configs = [
|
| 206 |
-
# (batch_size, num_heads, seq_len, head_dim, dtype, causal, name)
|
| 207 |
-
(1, 32, 512, 64, torch.float32, False, "Small seq, float32"),
|
| 208 |
-
(1, 32, 512, 64, torch.float16, False, "Small seq, float16"),
|
| 209 |
-
(1, 32, 512, 64, torch.bfloat16, False, "Small seq, bfloat16"),
|
| 210 |
-
|
| 211 |
-
(4, 32, 2048, 64, torch.float16, False, "Medium seq, float16"),
|
| 212 |
-
(4, 32, 2048, 64, torch.float16, True, "Medium seq, float16, causal"),
|
| 213 |
-
|
| 214 |
-
(2, 32, 4096, 64, torch.float16, False, "Large seq, float16"),
|
| 215 |
-
(2, 32, 4096, 64, torch.float16, True, "Large seq, float16, causal"),
|
| 216 |
-
|
| 217 |
-
# Different head dimensions
|
| 218 |
-
(2, 32, 2048, 32, torch.float16, False, "head_dim=32"),
|
| 219 |
-
(2, 32, 2048, 64, torch.float16, False, "head_dim=64"),
|
| 220 |
-
(2, 32, 2048, 128, torch.float16, False, "head_dim=128"),
|
| 221 |
-
|
| 222 |
-
# Vector kernel cases (q_seq=1) - Flash doesn't have a special vector kernel
|
| 223 |
-
# but we benchmark these cases for fair comparison with plain SDPA
|
| 224 |
-
(16, 32, 1, 64, torch.float16, False, "Vector kernel (q_seq=1)"),
|
| 225 |
-
(16, 32, 1, 128, torch.float16, False, "Vector kernel (q_seq=1, head_dim=128)"),
|
| 226 |
-
]
|
| 227 |
-
|
| 228 |
-
print("\nFlash Attention Benchmarks:")
|
| 229 |
-
print("-" * 80)
|
| 230 |
-
print(f"{'Config':<40} {'Time (ms)':<15} {'TFLOPS':<15}")
|
| 231 |
-
print("-" * 80)
|
| 232 |
-
|
| 233 |
-
for batch_size, num_heads, seq_len, head_dim, dtype, causal, name in configs:
|
| 234 |
-
time_ms = benchmark_flash_sdpa(
|
| 235 |
-
batch_size, num_heads, seq_len, head_dim, dtype, causal
|
| 236 |
-
)
|
| 237 |
-
|
| 238 |
-
# Calculate FLOPS (approximate)
|
| 239 |
-
# Attention: 2 * batch * heads * seq_len^2 * head_dim
|
| 240 |
-
flops = 2 * batch_size * num_heads * seq_len * seq_len * head_dim
|
| 241 |
-
tflops = (flops / 1e12) / (time_ms / 1000)
|
| 242 |
-
|
| 243 |
-
print(f"{name:<40} {time_ms:<15.3f} {tflops:<15.2f}")
|
| 244 |
-
|
| 245 |
-
# GQA benchmarks
|
| 246 |
-
print("\n\nGrouped Query Attention (GQA) Benchmarks:")
|
| 247 |
-
print("-" * 80)
|
| 248 |
-
print(f"{'Config':<40} {'Time (ms)':<15} {'TFLOPS':<15}")
|
| 249 |
-
print("-" * 80)
|
| 250 |
-
|
| 251 |
-
gqa_configs = [
|
| 252 |
-
# (batch_size, num_heads_q, num_heads_kv, seq_len, head_dim, dtype, causal, name)
|
| 253 |
-
(2, 32, 8, 2048, 64, torch.float16, False, "GQA 4:1 ratio"),
|
| 254 |
-
(2, 32, 4, 2048, 64, torch.float16, False, "GQA 8:1 ratio"),
|
| 255 |
-
(2, 32, 1, 2048, 64, torch.float16, False, "MQA (32:1 ratio)"),
|
| 256 |
-
(2, 32, 8, 2048, 128, torch.float16, False, "GQA 4:1, head_dim=128"),
|
| 257 |
-
]
|
| 258 |
-
|
| 259 |
-
for batch_size, num_heads_q, num_heads_kv, seq_len, head_dim, dtype, causal, name in gqa_configs:
|
| 260 |
-
time_ms = benchmark_flash_gqa(
|
| 261 |
-
batch_size, num_heads_q, num_heads_kv, seq_len, head_dim, dtype, causal
|
| 262 |
-
)
|
| 263 |
-
|
| 264 |
-
# Calculate FLOPS for GQA
|
| 265 |
-
flops = 2 * batch_size * num_heads_q * seq_len * seq_len * head_dim
|
| 266 |
-
tflops = (flops / 1e12) / (time_ms / 1000)
|
| 267 |
-
|
| 268 |
-
print(f"{name:<40} {time_ms:<15.3f} {tflops:<15.2f}")
|
| 269 |
-
|
| 270 |
-
# Variable length sequences (unique to Flash Attention)
|
| 271 |
-
print("\n\nVariable Length Sequence Benchmarks:")
|
| 272 |
-
print("-" * 80)
|
| 273 |
-
print(f"{'Config':<40} {'Time (ms)':<15} {'TFLOPS':<15}")
|
| 274 |
-
print("-" * 80)
|
| 275 |
-
|
| 276 |
-
varlen_configs = [
|
| 277 |
-
# (seq_lengths, num_heads, head_dim, dtype, causal, name)
|
| 278 |
-
([512, 1024, 2048, 4096], 32, 64, torch.float16, False, "Variable [512-4096]"),
|
| 279 |
-
([128, 256, 512, 1024, 2048], 32, 64, torch.float16, False, "Variable [128-2048]"),
|
| 280 |
-
([2048, 2048, 2048, 2048], 32, 64, torch.float16, False, "Fixed 4x2048 (baseline)"),
|
| 281 |
-
]
|
| 282 |
-
|
| 283 |
-
for seq_lengths, num_heads, head_dim, dtype, causal, name in varlen_configs:
|
| 284 |
-
time_ms = benchmark_variable_length(
|
| 285 |
-
seq_lengths, num_heads, head_dim, dtype, causal
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
# Calculate FLOPS for variable length
|
| 289 |
-
total_flops = 0
|
| 290 |
-
for seq_len in seq_lengths:
|
| 291 |
-
total_flops += 2 * num_heads * seq_len * seq_len * head_dim
|
| 292 |
-
tflops = (total_flops / 1e12) / (time_ms / 1000)
|
| 293 |
-
|
| 294 |
-
print(f"{name:<40} {time_ms:<15.3f} {tflops:<15.2f}")
|
| 295 |
-
|
| 296 |
-
print("\n" + "=" * 80)
|
| 297 |
-
print("Benchmark completed!")
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
if __name__ == "__main__":
|
| 301 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|