The kernel source is now on GitHub
Browse files- README.md +5 -2
- build.toml +0 -19
- flake.lock +0 -168
- flake.nix +0 -11
- rotary-xpu/rotary_xpu.cpp +0 -40
- rotary-xpu/rotary_xpu.hpp +0 -375
- rotary/rotary_cuda.cu +0 -45
- tests/__init__.py +0 -0
- tests/test_rotary.py +0 -130
- tests/utils.py +0 -23
- torch-ext/rotary/__init__.py +0 -19
- torch-ext/torch_binding.cpp +0 -54
README.md
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
---
|
| 2 |
license: bsd-3-clause
|
| 3 |
tags:
|
| 4 |
-
- kernel
|
| 5 |
---
|
| 6 |
|
| 7 |

|
| 8 |
|
| 9 |
## rotary
|
| 10 |
|
| 11 |
-
rotary embedding kernel from [Flash Attention](https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary).
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: bsd-3-clause
|
| 3 |
tags:
|
| 4 |
+
- kernel
|
| 5 |
---
|
| 6 |
|
| 7 |

|
| 8 |
|
| 9 |
## rotary
|
| 10 |
|
| 11 |
+
rotary embedding kernel from [Flash Attention](https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary).
|
| 12 |
+
|
| 13 |
+
Kernel source: https://github.com/huggingface/kernels-community/tree/main/rotary
|
| 14 |
+
|
build.toml
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
[general]
|
| 2 |
-
name = "rotary"
|
| 3 |
-
universal = false
|
| 4 |
-
|
| 5 |
-
[torch]
|
| 6 |
-
src = ["torch-ext/torch_binding.cpp"]
|
| 7 |
-
|
| 8 |
-
[kernel.activation]
|
| 9 |
-
backend = "cuda"
|
| 10 |
-
depends = ["torch"]
|
| 11 |
-
src = ["rotary/rotary_cuda.cu"]
|
| 12 |
-
|
| 13 |
-
[kernel.rotary_xpu]
|
| 14 |
-
backend = "xpu"
|
| 15 |
-
depends = ["torch"]
|
| 16 |
-
src = [
|
| 17 |
-
"rotary-xpu/rotary_xpu.cpp",
|
| 18 |
-
"rotary-xpu/rotary_xpu.hpp",
|
| 19 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flake.lock
DELETED
|
@@ -1,168 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"nodes": {
|
| 3 |
-
"flake-compat": {
|
| 4 |
-
"locked": {
|
| 5 |
-
"lastModified": 1747046372,
|
| 6 |
-
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 7 |
-
"owner": "edolstra",
|
| 8 |
-
"repo": "flake-compat",
|
| 9 |
-
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 10 |
-
"type": "github"
|
| 11 |
-
},
|
| 12 |
-
"original": {
|
| 13 |
-
"owner": "edolstra",
|
| 14 |
-
"repo": "flake-compat",
|
| 15 |
-
"type": "github"
|
| 16 |
-
}
|
| 17 |
-
},
|
| 18 |
-
"flake-compat_2": {
|
| 19 |
-
"locked": {
|
| 20 |
-
"lastModified": 1747046372,
|
| 21 |
-
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 22 |
-
"owner": "edolstra",
|
| 23 |
-
"repo": "flake-compat",
|
| 24 |
-
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 25 |
-
"type": "github"
|
| 26 |
-
},
|
| 27 |
-
"original": {
|
| 28 |
-
"owner": "edolstra",
|
| 29 |
-
"repo": "flake-compat",
|
| 30 |
-
"type": "github"
|
| 31 |
-
}
|
| 32 |
-
},
|
| 33 |
-
"flake-utils": {
|
| 34 |
-
"inputs": {
|
| 35 |
-
"systems": "systems"
|
| 36 |
-
},
|
| 37 |
-
"locked": {
|
| 38 |
-
"lastModified": 1731533236,
|
| 39 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 40 |
-
"owner": "numtide",
|
| 41 |
-
"repo": "flake-utils",
|
| 42 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 43 |
-
"type": "github"
|
| 44 |
-
},
|
| 45 |
-
"original": {
|
| 46 |
-
"owner": "numtide",
|
| 47 |
-
"repo": "flake-utils",
|
| 48 |
-
"type": "github"
|
| 49 |
-
}
|
| 50 |
-
},
|
| 51 |
-
"flake-utils_2": {
|
| 52 |
-
"inputs": {
|
| 53 |
-
"systems": "systems_2"
|
| 54 |
-
},
|
| 55 |
-
"locked": {
|
| 56 |
-
"lastModified": 1731533236,
|
| 57 |
-
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 58 |
-
"owner": "numtide",
|
| 59 |
-
"repo": "flake-utils",
|
| 60 |
-
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 61 |
-
"type": "github"
|
| 62 |
-
},
|
| 63 |
-
"original": {
|
| 64 |
-
"owner": "numtide",
|
| 65 |
-
"repo": "flake-utils",
|
| 66 |
-
"type": "github"
|
| 67 |
-
}
|
| 68 |
-
},
|
| 69 |
-
"hf-nix": {
|
| 70 |
-
"inputs": {
|
| 71 |
-
"flake-compat": "flake-compat_2",
|
| 72 |
-
"flake-utils": "flake-utils_2",
|
| 73 |
-
"nixpkgs": "nixpkgs"
|
| 74 |
-
},
|
| 75 |
-
"locked": {
|
| 76 |
-
"lastModified": 1759493343,
|
| 77 |
-
"narHash": "sha256-8fhl0gwMAnOkQbogPIVq+Fha+Yeq52FaRXfwF+F9Q+k=",
|
| 78 |
-
"owner": "huggingface",
|
| 79 |
-
"repo": "hf-nix",
|
| 80 |
-
"rev": "b1fc3a18b52447a0f24bc6884418edc5e66082b9",
|
| 81 |
-
"type": "github"
|
| 82 |
-
},
|
| 83 |
-
"original": {
|
| 84 |
-
"owner": "huggingface",
|
| 85 |
-
"repo": "hf-nix",
|
| 86 |
-
"type": "github"
|
| 87 |
-
}
|
| 88 |
-
},
|
| 89 |
-
"kernel-builder": {
|
| 90 |
-
"inputs": {
|
| 91 |
-
"flake-compat": "flake-compat",
|
| 92 |
-
"flake-utils": "flake-utils",
|
| 93 |
-
"hf-nix": "hf-nix",
|
| 94 |
-
"nixpkgs": [
|
| 95 |
-
"kernel-builder",
|
| 96 |
-
"hf-nix",
|
| 97 |
-
"nixpkgs"
|
| 98 |
-
]
|
| 99 |
-
},
|
| 100 |
-
"locked": {
|
| 101 |
-
"lastModified": 1759501552,
|
| 102 |
-
"narHash": "sha256-Wnrw3l22y9jdL4C9TGxznIB4qiQznWLtU9ykCbK49EE=",
|
| 103 |
-
"owner": "huggingface",
|
| 104 |
-
"repo": "kernel-builder",
|
| 105 |
-
"rev": "ed5722d95d9395fbc7d0239a97208f2b04147dfa",
|
| 106 |
-
"type": "github"
|
| 107 |
-
},
|
| 108 |
-
"original": {
|
| 109 |
-
"owner": "huggingface",
|
| 110 |
-
"repo": "kernel-builder",
|
| 111 |
-
"type": "github"
|
| 112 |
-
}
|
| 113 |
-
},
|
| 114 |
-
"nixpkgs": {
|
| 115 |
-
"locked": {
|
| 116 |
-
"lastModified": 1755963616,
|
| 117 |
-
"narHash": "sha256-6yD0ww/S8n+U2uPYcJZ3DRURP8Kx036GRpR2uPNZroE=",
|
| 118 |
-
"owner": "nixos",
|
| 119 |
-
"repo": "nixpkgs",
|
| 120 |
-
"rev": "73e96df7cff5783f45e21342a75a1540c4eddce4",
|
| 121 |
-
"type": "github"
|
| 122 |
-
},
|
| 123 |
-
"original": {
|
| 124 |
-
"owner": "nixos",
|
| 125 |
-
"ref": "nixos-unstable-small",
|
| 126 |
-
"repo": "nixpkgs",
|
| 127 |
-
"type": "github"
|
| 128 |
-
}
|
| 129 |
-
},
|
| 130 |
-
"root": {
|
| 131 |
-
"inputs": {
|
| 132 |
-
"kernel-builder": "kernel-builder"
|
| 133 |
-
}
|
| 134 |
-
},
|
| 135 |
-
"systems": {
|
| 136 |
-
"locked": {
|
| 137 |
-
"lastModified": 1681028828,
|
| 138 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 139 |
-
"owner": "nix-systems",
|
| 140 |
-
"repo": "default",
|
| 141 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 142 |
-
"type": "github"
|
| 143 |
-
},
|
| 144 |
-
"original": {
|
| 145 |
-
"owner": "nix-systems",
|
| 146 |
-
"repo": "default",
|
| 147 |
-
"type": "github"
|
| 148 |
-
}
|
| 149 |
-
},
|
| 150 |
-
"systems_2": {
|
| 151 |
-
"locked": {
|
| 152 |
-
"lastModified": 1681028828,
|
| 153 |
-
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 154 |
-
"owner": "nix-systems",
|
| 155 |
-
"repo": "default",
|
| 156 |
-
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 157 |
-
"type": "github"
|
| 158 |
-
},
|
| 159 |
-
"original": {
|
| 160 |
-
"owner": "nix-systems",
|
| 161 |
-
"repo": "default",
|
| 162 |
-
"type": "github"
|
| 163 |
-
}
|
| 164 |
-
}
|
| 165 |
-
},
|
| 166 |
-
"root": "root",
|
| 167 |
-
"version": 7
|
| 168 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
flake.nix
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
description = "Flake for Torch kernel extension";
|
| 3 |
-
inputs = {
|
| 4 |
-
kernel-builder.url = "github:huggingface/kernel-builder";
|
| 5 |
-
};
|
| 6 |
-
outputs = { self, kernel-builder, }:
|
| 7 |
-
kernel-builder.lib.genFlakeOutputs {
|
| 8 |
-
inherit self;
|
| 9 |
-
path = ./.;
|
| 10 |
-
};
|
| 11 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rotary-xpu/rotary_xpu.cpp
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
#include <torch/all.h>
|
| 2 |
-
#include "rotary_xpu.hpp"
|
| 3 |
-
|
| 4 |
-
void _apply_rotary(torch::Tensor const &x1, torch::Tensor const &x2,
|
| 5 |
-
torch::Tensor const &cos, torch::Tensor const &sin,
|
| 6 |
-
torch::Tensor &out1, torch::Tensor &out2,
|
| 7 |
-
bool const conj) {
|
| 8 |
-
auto iter = at::TensorIteratorConfig()
|
| 9 |
-
.add_output(out1)
|
| 10 |
-
.add_output(out2)
|
| 11 |
-
.add_input(x1)
|
| 12 |
-
.add_input(x2)
|
| 13 |
-
.add_input(cos)
|
| 14 |
-
.add_input(sin)
|
| 15 |
-
.check_all_same_dtype(false)
|
| 16 |
-
.promote_inputs_to_common_dtype(false)
|
| 17 |
-
.build();
|
| 18 |
-
|
| 19 |
-
if (!conj) {
|
| 20 |
-
AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel_xpu", [&] {
|
| 21 |
-
gpu_kernel_multiple_outputs(
|
| 22 |
-
iter, [] (scalar_t x1, scalar_t x2, scalar_t cos,
|
| 23 |
-
scalar_t sin) -> std::tuple<scalar_t, scalar_t> {
|
| 24 |
-
scalar_t out1 = float(x1) * float(cos) - float(x2) * float(sin);
|
| 25 |
-
scalar_t out2 = float(x1) * float(sin) + float(x2) * float(cos);
|
| 26 |
-
return {out1, out2};
|
| 27 |
-
});
|
| 28 |
-
});
|
| 29 |
-
} else {
|
| 30 |
-
AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel_xpu", [&] {
|
| 31 |
-
gpu_kernel_multiple_outputs(
|
| 32 |
-
iter, [] (scalar_t x1, scalar_t x2, scalar_t cos,
|
| 33 |
-
scalar_t sin) -> std::tuple<scalar_t, scalar_t> {
|
| 34 |
-
scalar_t out1 = float(x1) * float(cos) + float(x2) * float(sin);
|
| 35 |
-
scalar_t out2 = -float(x1) * float(sin) + float(x2) * float(cos);
|
| 36 |
-
return {out1, out2};
|
| 37 |
-
});
|
| 38 |
-
});
|
| 39 |
-
}
|
| 40 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rotary-xpu/rotary_xpu.hpp
DELETED
|
@@ -1,375 +0,0 @@
|
|
| 1 |
-
#include <ATen/core/TensorBody.h>
|
| 2 |
-
#include <ATen/detail/FunctionTraits.h>
|
| 3 |
-
#include <ATen/native/TensorIterator.h>
|
| 4 |
-
#include <sycl/sycl.hpp>
|
| 5 |
-
#include <ATen/core/Array.h>
|
| 6 |
-
#include <c10/macros/Macros.h>
|
| 7 |
-
#include <c10/util/Exception.h>
|
| 8 |
-
#include <c10/util/TypeCast.h>
|
| 9 |
-
#include <cstdint>
|
| 10 |
-
#include <type_traits>
|
| 11 |
-
#include <array>
|
| 12 |
-
#include <c10/core/ScalarType.h>
|
| 13 |
-
#include <c10/xpu/XPUStream.h>
|
| 14 |
-
#include <ATen/xpu/XPUContext.h>
|
| 15 |
-
|
| 16 |
-
constexpr int MAX_DIMS = 12;
|
| 17 |
-
|
| 18 |
-
struct LoadWithoutCast {
|
| 19 |
-
template <typename scalar_t>
|
| 20 |
-
C10_DEVICE scalar_t load(char* base_ptr, uint32_t offset, int arg) {
|
| 21 |
-
return c10::load(reinterpret_cast<scalar_t*>(base_ptr) + offset);
|
| 22 |
-
}
|
| 23 |
-
};
|
| 24 |
-
|
| 25 |
-
struct StoreWithoutCast {
|
| 26 |
-
template <typename scalar_t>
|
| 27 |
-
C10_DEVICE void store(scalar_t value, char* base_ptr, uint32_t offset, int arg = 0) {
|
| 28 |
-
*(reinterpret_cast<scalar_t*>(base_ptr) + offset) = value;
|
| 29 |
-
}
|
| 30 |
-
};
|
| 31 |
-
|
| 32 |
-
template <template <int i> typename func, int end, int current = 0>
|
| 33 |
-
struct static_unroll {
|
| 34 |
-
template <typename... Args>
|
| 35 |
-
static inline C10_HOST_DEVICE void with_args(Args&&... args) {
|
| 36 |
-
func<current>::apply(std::forward<Args>(args)...);
|
| 37 |
-
static_unroll<func, end, current + 1>::with_args(args...);
|
| 38 |
-
}
|
| 39 |
-
};
|
| 40 |
-
|
| 41 |
-
template <template <int i> typename func, int end>
|
| 42 |
-
struct static_unroll<func, end, end> {
|
| 43 |
-
template <typename... Args>
|
| 44 |
-
static inline C10_HOST_DEVICE void with_args(Args... args) {}
|
| 45 |
-
};
|
| 46 |
-
|
| 47 |
-
template <int current>
|
| 48 |
-
struct multi_outputs_store_helper {
|
| 49 |
-
template <int ntensors, int num_outputs, typename... Args>
|
| 50 |
-
static C10_HOST_DEVICE void apply(
|
| 51 |
-
at::detail::Array<char*, ntensors> data,
|
| 52 |
-
at::detail::Array<uint32_t, num_outputs> offsets,
|
| 53 |
-
std::tuple<Args...> ret) {
|
| 54 |
-
using T = typename std::tuple_element<current, std::tuple<Args...>>::type;
|
| 55 |
-
T* to = reinterpret_cast<T*>(data[current]) + offsets[current];
|
| 56 |
-
*to = std::get<current>(ret);
|
| 57 |
-
}
|
| 58 |
-
};
|
| 59 |
-
|
| 60 |
-
template <int arg_index>
|
| 61 |
-
struct unroll_load_helper {
|
| 62 |
-
template <typename args_t, typename policy_t, typename offset_t, typename loader_t>
|
| 63 |
-
static C10_DEVICE void apply(
|
| 64 |
-
policy_t& self,
|
| 65 |
-
args_t* args,
|
| 66 |
-
offset_t offset,
|
| 67 |
-
loader_t loader,
|
| 68 |
-
int j,
|
| 69 |
-
int num_outputs) {
|
| 70 |
-
using arg_t = std::tuple_element_t<arg_index, args_t>;
|
| 71 |
-
std::get<arg_index>(args[j]) = loader.template load<arg_t>(
|
| 72 |
-
self.data[arg_index + num_outputs], offset[arg_index], arg_index);
|
| 73 |
-
}
|
| 74 |
-
};
|
| 75 |
-
|
| 76 |
-
template <int item_work_size, typename data_t, typename inp_calc_t, typename out_calc_t, int num_outputs>
|
| 77 |
-
struct multi_outputs_unroll {
|
| 78 |
-
data_t data;
|
| 79 |
-
int remaining;
|
| 80 |
-
inp_calc_t input_offset_calculator;
|
| 81 |
-
out_calc_t output_offset_calculator;
|
| 82 |
-
LoadWithoutCast loader;
|
| 83 |
-
StoreWithoutCast storer;
|
| 84 |
-
int item_idx;
|
| 85 |
-
int group_idx;
|
| 86 |
-
int num_items_per_group;
|
| 87 |
-
int group_work_size;
|
| 88 |
-
|
| 89 |
-
multi_outputs_unroll(
|
| 90 |
-
data_t data,
|
| 91 |
-
int remaining,
|
| 92 |
-
inp_calc_t ic,
|
| 93 |
-
out_calc_t oc,
|
| 94 |
-
int item_idx,
|
| 95 |
-
int group_idx,
|
| 96 |
-
int num_items_per_group)
|
| 97 |
-
: data(data),
|
| 98 |
-
remaining(remaining),
|
| 99 |
-
input_offset_calculator(ic),
|
| 100 |
-
output_offset_calculator(oc),
|
| 101 |
-
item_idx(item_idx),
|
| 102 |
-
group_idx(group_idx),
|
| 103 |
-
num_items_per_group(num_items_per_group),
|
| 104 |
-
group_work_size(item_work_size * num_items_per_group) {}
|
| 105 |
-
|
| 106 |
-
inline bool check_inbounds(int item_work_elem) const {
|
| 107 |
-
return (item_idx + item_work_elem * num_items_per_group < remaining);
|
| 108 |
-
}
|
| 109 |
-
|
| 110 |
-
template <typename args_t>
|
| 111 |
-
inline void load(args_t* args) {
|
| 112 |
-
constexpr int arity = std::tuple_size<args_t>::value;
|
| 113 |
-
int item_idx_ = item_idx;
|
| 114 |
-
#pragma unroll
|
| 115 |
-
for (int i = 0; i < item_work_size; i++) {
|
| 116 |
-
if (item_idx_ >= remaining) {
|
| 117 |
-
return;
|
| 118 |
-
}
|
| 119 |
-
int linear_idx = item_idx_ + group_work_size * group_idx;
|
| 120 |
-
auto offset = input_offset_calculator.get(linear_idx);
|
| 121 |
-
static_unroll<unroll_load_helper, arity>::with_args(
|
| 122 |
-
*this, args, offset, loader, i, num_outputs);
|
| 123 |
-
item_idx_ += num_items_per_group;
|
| 124 |
-
}
|
| 125 |
-
}
|
| 126 |
-
|
| 127 |
-
template <typename return_t>
|
| 128 |
-
inline void store(return_t* from) {
|
| 129 |
-
int item_idx_ = item_idx;
|
| 130 |
-
#pragma unroll
|
| 131 |
-
for (int i = 0; i < item_work_size; i++) {
|
| 132 |
-
if (item_idx_ >= this->remaining) {
|
| 133 |
-
return;
|
| 134 |
-
}
|
| 135 |
-
int linear_idx = item_idx_ + group_work_size * group_idx;
|
| 136 |
-
auto offsets = this->output_offset_calculator.get(linear_idx);
|
| 137 |
-
static_unroll<multi_outputs_store_helper, num_outputs>::with_args(this->data, offsets, from[i]);
|
| 138 |
-
item_idx_ += num_items_per_group;
|
| 139 |
-
}
|
| 140 |
-
}
|
| 141 |
-
};
|
| 142 |
-
|
| 143 |
-
template <int item_work_size, typename func_t, typename policy_t>
|
| 144 |
-
inline void elementwise_kernel_helper(func_t f, policy_t policy) {
|
| 145 |
-
using traits = function_traits<func_t>;
|
| 146 |
-
using return_t = typename traits::result_type;
|
| 147 |
-
using args_t = typename traits::ArgsTuple;
|
| 148 |
-
|
| 149 |
-
return_t results[item_work_size];
|
| 150 |
-
args_t args[item_work_size];
|
| 151 |
-
|
| 152 |
-
policy.load(args);
|
| 153 |
-
|
| 154 |
-
#pragma unroll
|
| 155 |
-
for (int i = 0; i < item_work_size; i++) {
|
| 156 |
-
if (policy.check_inbounds(i)) {
|
| 157 |
-
results[i] = std::apply(f, args[i]);
|
| 158 |
-
}
|
| 159 |
-
}
|
| 160 |
-
|
| 161 |
-
policy.store(results);
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
|
| 165 |
-
struct UnrolledElementwiseForMultiOutputsKernel {
|
| 166 |
-
static constexpr int item_work_size = 4;
|
| 167 |
-
|
| 168 |
-
void operator()(sycl::nd_item<1> item_id) const {
|
| 169 |
-
int grpsz = item_id.get_local_range(0);
|
| 170 |
-
int grpid = item_id.get_group(0);
|
| 171 |
-
int lid = item_id.get_local_id(0);
|
| 172 |
-
int remaining = numel_ - item_work_size * grpsz * grpid;
|
| 173 |
-
auto policy = multi_outputs_unroll<item_work_size, array_t, in_calc_t, out_calc_t, num_outputs>(
|
| 174 |
-
data_, remaining, ic_, oc_, lid, grpid, grpsz);
|
| 175 |
-
elementwise_kernel_helper<item_work_size>(f_, policy);
|
| 176 |
-
};
|
| 177 |
-
|
| 178 |
-
UnrolledElementwiseForMultiOutputsKernel(int numel, func_t f, array_t data, in_calc_t ic, out_calc_t oc)
|
| 179 |
-
: numel_(numel), f_(f), data_(data), ic_(ic), oc_(oc) {}
|
| 180 |
-
|
| 181 |
-
private:
|
| 182 |
-
int numel_;
|
| 183 |
-
func_t f_;
|
| 184 |
-
array_t data_;
|
| 185 |
-
in_calc_t ic_;
|
| 186 |
-
out_calc_t oc_;
|
| 187 |
-
};
|
| 188 |
-
|
| 189 |
-
template <typename Value>
|
| 190 |
-
struct IntDivider {
|
| 191 |
-
IntDivider() = default;
|
| 192 |
-
IntDivider(Value d) : divisor(d) {}
|
| 193 |
-
|
| 194 |
-
C10_HOST_DEVICE inline Value div(Value n) const {
|
| 195 |
-
return n / divisor;
|
| 196 |
-
}
|
| 197 |
-
C10_HOST_DEVICE inline Value mod(Value n) const {
|
| 198 |
-
return n % divisor;
|
| 199 |
-
}
|
| 200 |
-
C10_HOST_DEVICE inline auto divmod(Value n) const {
|
| 201 |
-
return std::make_pair(n / divisor, n % divisor);
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
-
Value divisor;
|
| 205 |
-
};
|
| 206 |
-
|
| 207 |
-
template <int NARGS, typename index_t = uint32_t, bool signed_strides = false>
|
| 208 |
-
struct OffsetCalculator {
|
| 209 |
-
using stride_t = std::conditional_t<signed_strides, std::make_signed_t<index_t>, index_t>;
|
| 210 |
-
using offset_type = at::detail::Array<stride_t, std::max<int>(NARGS, 1)>;
|
| 211 |
-
|
| 212 |
-
OffsetCalculator(int dims, const int64_t* sizes, const int64_t* const* strides, const int64_t* element_sizes = nullptr)
|
| 213 |
-
: dims(dims) {
|
| 214 |
-
TORCH_CHECK(dims <= MAX_DIMS, "tensor has too many (>", MAX_DIMS, ") dims");
|
| 215 |
-
for (int i = 0; i < dims; i++) {
|
| 216 |
-
sizes_[i] = IntDivider<index_t>(sizes[i]);
|
| 217 |
-
for (int arg = 0; arg < NARGS; arg++) {
|
| 218 |
-
int64_t element_size = (element_sizes == nullptr ? 1LL : element_sizes[arg]);
|
| 219 |
-
strides_[i][arg] = strides[arg][i] / element_size;
|
| 220 |
-
}
|
| 221 |
-
}
|
| 222 |
-
}
|
| 223 |
-
|
| 224 |
-
C10_HOST_DEVICE offset_type get(index_t linear_idx) const {
|
| 225 |
-
offset_type offsets;
|
| 226 |
-
#pragma unroll
|
| 227 |
-
for (int arg = 0; arg < NARGS; arg++) {
|
| 228 |
-
offsets[arg] = 0;
|
| 229 |
-
}
|
| 230 |
-
|
| 231 |
-
#pragma unroll
|
| 232 |
-
for (int dim = 0; dim < MAX_DIMS; ++dim) {
|
| 233 |
-
if (dim == dims) {
|
| 234 |
-
break;
|
| 235 |
-
}
|
| 236 |
-
auto divmod = sizes_[dim].divmod(linear_idx);
|
| 237 |
-
linear_idx = divmod.first;
|
| 238 |
-
|
| 239 |
-
#pragma unroll
|
| 240 |
-
for (int arg = 0; arg < NARGS; arg++) {
|
| 241 |
-
offsets[arg] += divmod.second * strides_[dim][arg];
|
| 242 |
-
}
|
| 243 |
-
}
|
| 244 |
-
return offsets;
|
| 245 |
-
}
|
| 246 |
-
|
| 247 |
-
int dims;
|
| 248 |
-
IntDivider<index_t> sizes_[MAX_DIMS];
|
| 249 |
-
stride_t strides_[MAX_DIMS][std::max<int>(NARGS, 1)];
|
| 250 |
-
};
|
| 251 |
-
|
| 252 |
-
template <int N>
|
| 253 |
-
static OffsetCalculator<N> make_input_offset_calculator(const at::TensorIteratorBase& iter) {
|
| 254 |
-
constexpr int array_size = std::max<int>(N, 1);
|
| 255 |
-
TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
|
| 256 |
-
std::array<const int64_t*, array_size> strides;
|
| 257 |
-
int64_t element_sizes[array_size];
|
| 258 |
-
for (int i = 0; i < N; i++) {
|
| 259 |
-
strides[i] = iter.strides(i + iter.noutputs()).data();
|
| 260 |
-
element_sizes[i] = iter.element_size(i + iter.noutputs());
|
| 261 |
-
}
|
| 262 |
-
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
|
| 263 |
-
}
|
| 264 |
-
|
| 265 |
-
template <int num_outputs = 1>
|
| 266 |
-
static OffsetCalculator<num_outputs> make_output_offset_calculator(const at::TensorIteratorBase& iter) {
|
| 267 |
-
TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
|
| 268 |
-
std::array<const int64_t*, num_outputs> strides;
|
| 269 |
-
int64_t element_sizes[num_outputs];
|
| 270 |
-
for (int i = 0; i < num_outputs; i++) {
|
| 271 |
-
strides[i] = iter.strides(i).data();
|
| 272 |
-
element_sizes[i] = iter.element_size(i);
|
| 273 |
-
}
|
| 274 |
-
return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
|
| 275 |
-
}
|
| 276 |
-
|
| 277 |
-
static inline int64_t syclMaxWorkItemsPerSubSlice(at::DeviceIndex dev_id = c10::xpu::getCurrentXPUStream().device_index()) {
|
| 278 |
-
auto* dev_prop = at::xpu::getDeviceProperties(dev_id);
|
| 279 |
-
int64_t simd_width = dev_prop->sub_group_sizes[0];
|
| 280 |
-
int64_t eu_count = dev_prop->gpu_eu_count_per_subslice;
|
| 281 |
-
return simd_width * eu_count;
|
| 282 |
-
}
|
| 283 |
-
|
| 284 |
-
template<class T>
|
| 285 |
-
T ceil_div(T dividend, T divisor) {
|
| 286 |
-
return (dividend + divisor - 1) / divisor;
|
| 287 |
-
}
|
| 288 |
-
|
| 289 |
-
template <typename ker_t>
|
| 290 |
-
static inline void sycl_kernel_submit(int64_t global_range, int64_t local_range, ::sycl::queue q, ker_t ker) {
|
| 291 |
-
q.parallel_for(
|
| 292 |
-
sycl::nd_range<1>(sycl::range<1>(global_range), sycl::range<1>(local_range)),
|
| 293 |
-
ker
|
| 294 |
-
);
|
| 295 |
-
}
|
| 296 |
-
|
| 297 |
-
template <int num_outputs, typename func_t, typename array_t, typename in_calc_t, typename out_calc_t>
|
| 298 |
-
static inline void launch_unrolled_kernel_for_multi_outputs(
|
| 299 |
-
int64_t N,
|
| 300 |
-
const func_t& f,
|
| 301 |
-
array_t data,
|
| 302 |
-
in_calc_t ic,
|
| 303 |
-
out_calc_t oc) {
|
| 304 |
-
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
|
| 305 |
-
|
| 306 |
-
auto ker = UnrolledElementwiseForMultiOutputsKernel<num_outputs, func_t, array_t, in_calc_t, out_calc_t>(N, f, data, ic, oc);
|
| 307 |
-
using ker_t = decltype(ker);
|
| 308 |
-
|
| 309 |
-
int wg_sz = syclMaxWorkItemsPerSubSlice();
|
| 310 |
-
int num_wg = ceil_div<int>(N, ker_t::item_work_size * wg_sz);
|
| 311 |
-
sycl_kernel_submit(wg_sz * num_wg, wg_sz, c10::xpu::getCurrentXPUStream().queue(), ker);
|
| 312 |
-
}
|
| 313 |
-
|
| 314 |
-
template <int N>
|
| 315 |
-
struct TrivialOffsetCalculator {
|
| 316 |
-
using offset_type = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
|
| 317 |
-
|
| 318 |
-
C10_HOST_DEVICE offset_type get(uint32_t linear_idx) const {
|
| 319 |
-
offset_type offsets;
|
| 320 |
-
#pragma unroll
|
| 321 |
-
for (int arg = 0; arg < N; arg++) {
|
| 322 |
-
offsets[arg] = linear_idx;
|
| 323 |
-
}
|
| 324 |
-
return offsets;
|
| 325 |
-
}
|
| 326 |
-
};
|
| 327 |
-
|
| 328 |
-
template <typename func_t>
|
| 329 |
-
void gpu_kernel_multiple_outputs_impl(at::TensorIteratorBase& iter, const func_t& f) {
|
| 330 |
-
using traits = function_traits<func_t>;
|
| 331 |
-
using output_t = typename traits::result_type;
|
| 332 |
-
constexpr int num_outputs = std::tuple_size<output_t>::value;
|
| 333 |
-
constexpr int num_inputs = traits::arity;
|
| 334 |
-
constexpr int ntensors = num_outputs + num_inputs;
|
| 335 |
-
|
| 336 |
-
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
|
| 337 |
-
TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
|
| 338 |
-
|
| 339 |
-
at::detail::Array<char*, ntensors> data;
|
| 340 |
-
for (int i = 0; i < ntensors; i++) {
|
| 341 |
-
data[i] = (char*)iter.data_ptr(i);
|
| 342 |
-
}
|
| 343 |
-
|
| 344 |
-
int64_t numel = iter.numel();
|
| 345 |
-
|
| 346 |
-
if (iter.is_contiguous()) {
|
| 347 |
-
auto input_calc = TrivialOffsetCalculator<num_inputs>();
|
| 348 |
-
auto output_calc = TrivialOffsetCalculator<num_outputs>();
|
| 349 |
-
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
|
| 350 |
-
} else {
|
| 351 |
-
auto input_calc = make_input_offset_calculator<num_inputs>(iter);
|
| 352 |
-
auto output_calc = make_output_offset_calculator<num_outputs>(iter);
|
| 353 |
-
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
|
| 354 |
-
}
|
| 355 |
-
}
|
| 356 |
-
|
| 357 |
-
template <typename func_t>
|
| 358 |
-
void gpu_kernel_multiple_outputs(at::TensorIteratorBase& iter, const func_t& f) {
|
| 359 |
-
for (int arg = 0; arg < iter.ntensors(); arg++) {
|
| 360 |
-
TORCH_INTERNAL_ASSERT(iter.device(arg).is_xpu());
|
| 361 |
-
}
|
| 362 |
-
|
| 363 |
-
if (iter.numel() == 0) {
|
| 364 |
-
return;
|
| 365 |
-
}
|
| 366 |
-
|
| 367 |
-
if (!iter.can_use_32bit_indexing()) {
|
| 368 |
-
for (auto& sub_iter : iter.with_32bit_indexing()) {
|
| 369 |
-
gpu_kernel_multiple_outputs(sub_iter, f);
|
| 370 |
-
}
|
| 371 |
-
return;
|
| 372 |
-
}
|
| 373 |
-
|
| 374 |
-
gpu_kernel_multiple_outputs_impl(iter, f);
|
| 375 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rotary/rotary_cuda.cu
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
/******************************************************************************
|
| 2 |
-
* Copyright (c) 2023, Tri Dao.
|
| 3 |
-
******************************************************************************/
|
| 4 |
-
|
| 5 |
-
#include <torch/all.h>
|
| 6 |
-
#include <ATen/native/TensorIterator.h>
|
| 7 |
-
#include <ATen/native/cuda/Loops.cuh>
|
| 8 |
-
|
| 9 |
-
void _apply_rotary(torch::Tensor const &x1, torch::Tensor const &x2,
|
| 10 |
-
torch::Tensor const &cos, torch::Tensor const &sin,
|
| 11 |
-
torch::Tensor &out1, torch::Tensor &out2,
|
| 12 |
-
bool const conj) {
|
| 13 |
-
auto iter = at::TensorIteratorConfig()
|
| 14 |
-
.add_output(out1)
|
| 15 |
-
.add_output(out2)
|
| 16 |
-
.add_input(x1)
|
| 17 |
-
.add_input(x2)
|
| 18 |
-
.add_input(cos)
|
| 19 |
-
.add_input(sin)
|
| 20 |
-
.check_all_same_dtype(false)
|
| 21 |
-
.promote_inputs_to_common_dtype(false)
|
| 22 |
-
.build();
|
| 23 |
-
|
| 24 |
-
if (!conj) {
|
| 25 |
-
AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel", [&] {
|
| 26 |
-
at::native::gpu_kernel_multiple_outputs(
|
| 27 |
-
iter, [] GPU_LAMBDA (scalar_t x1, scalar_t x2, scalar_t cos,
|
| 28 |
-
scalar_t sin) -> thrust::tuple<scalar_t, scalar_t> {
|
| 29 |
-
scalar_t out1 = float(x1) * float(cos) - float(x2) * float(sin);
|
| 30 |
-
scalar_t out2 = float(x1) * float(sin) + float(x2) * float(cos);
|
| 31 |
-
return {out1, out2};
|
| 32 |
-
});
|
| 33 |
-
});
|
| 34 |
-
} else {
|
| 35 |
-
AT_DISPATCH_FLOATING_TYPES_AND2(at::kBFloat16, at::kHalf, x1.scalar_type(), "rotary_kernel", [&] {
|
| 36 |
-
at::native::gpu_kernel_multiple_outputs(
|
| 37 |
-
iter, [] GPU_LAMBDA (scalar_t x1, scalar_t x2, scalar_t cos,
|
| 38 |
-
scalar_t sin) -> thrust::tuple<scalar_t, scalar_t> {
|
| 39 |
-
scalar_t out1 = float(x1) * float(cos) + float(x2) * float(sin);
|
| 40 |
-
scalar_t out2 = -float(x1) * float(sin) + float(x2) * float(cos);
|
| 41 |
-
return {out1, out2};
|
| 42 |
-
});
|
| 43 |
-
});
|
| 44 |
-
}
|
| 45 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/__init__.py
DELETED
|
File without changes
|
tests/test_rotary.py
DELETED
|
@@ -1,130 +0,0 @@
|
|
| 1 |
-
import pytest
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from tests.utils import infer_device, supports_bfloat16
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
|
| 7 |
-
# import rotary
|
| 8 |
-
# from transformers.trainer_utils import set_seed
|
| 9 |
-
# set_seed(42)
|
| 10 |
-
|
| 11 |
-
# Set the local repo path, relative path
|
| 12 |
-
try:
|
| 13 |
-
import rotary
|
| 14 |
-
except ImportError:
|
| 15 |
-
from kernels import get_local_kernel
|
| 16 |
-
repo_path = Path(__file__).parent.parent
|
| 17 |
-
rotary = get_local_kernel(repo_path=repo_path, package_name="rotary")
|
| 18 |
-
|
| 19 |
-
def apply_rotary_torch(x1: torch.Tensor, x2: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, conj: bool = False):
|
| 20 |
-
assert x1.shape == x2.shape, "x1 and x2 must have the same shape"
|
| 21 |
-
|
| 22 |
-
if not conj:
|
| 23 |
-
out1 = x1 * cos - x2 * sin
|
| 24 |
-
out2 = x1 * sin + x2 * cos
|
| 25 |
-
else:
|
| 26 |
-
out1 = x1 * cos + x2 * sin
|
| 27 |
-
out2 = -x1 * sin + x2 * cos
|
| 28 |
-
return out1, out2
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def apply_rotary_torch_wrapper(q, k, cos, sin, conj: bool = False):
|
| 32 |
-
"""the wrapper for apply_rotary_torch"""
|
| 33 |
-
rotary_dim = cos.shape[-1]
|
| 34 |
-
|
| 35 |
-
# apply rotation encoding to Q
|
| 36 |
-
q1 = q[..., :rotary_dim]
|
| 37 |
-
q2 = q[..., rotary_dim : 2 * rotary_dim]
|
| 38 |
-
q_out_1, q_out_2 = apply_rotary_torch(q1, q2, cos, sin, conj)
|
| 39 |
-
q_out = torch.cat([q_out_1, q_out_2, q[..., 2 * rotary_dim:]], dim=-1)
|
| 40 |
-
|
| 41 |
-
# apply rotation encoding to K
|
| 42 |
-
k1 = k[..., :rotary_dim]
|
| 43 |
-
k2 = k[..., rotary_dim : 2 * rotary_dim]
|
| 44 |
-
k_out_1, k_out_2 = apply_rotary_torch(k1, k2, cos, sin, conj)
|
| 45 |
-
k_out = torch.cat([k_out_1, k_out_2, k[..., 2 * rotary_dim:]], dim=-1)
|
| 46 |
-
|
| 47 |
-
return q_out, k_out
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def apply_rotary_kernel_wrapper(q, k, cos, sin, conj: bool = False):
|
| 51 |
-
"""the wrapper for apply_rotary_kernel"""
|
| 52 |
-
rotary_dim = cos.shape[-1]
|
| 53 |
-
|
| 54 |
-
# apply rotation encoding to Q
|
| 55 |
-
q1 = q[..., :rotary_dim]
|
| 56 |
-
q2 = q[..., rotary_dim : 2 * rotary_dim]
|
| 57 |
-
rotary.apply_rotary(q1, q2, cos, sin, q1, q2, conj)
|
| 58 |
-
|
| 59 |
-
# apply rotation encoding to K
|
| 60 |
-
k1 = k[..., :rotary_dim]
|
| 61 |
-
k2 = k[..., rotary_dim : 2 * rotary_dim]
|
| 62 |
-
rotary.apply_rotary(k1, k2, cos, sin, k1, k2, conj)
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
@pytest.mark.parametrize("batch_size", [1, 2])
|
| 66 |
-
@pytest.mark.parametrize("nheads", [8, 16])
|
| 67 |
-
@pytest.mark.parametrize("seqlen", [128, 256])
|
| 68 |
-
@pytest.mark.parametrize("headdim, rotary_dim", [(64, 32), (128, 64), (64, 30)])
|
| 69 |
-
@pytest.mark.parametrize("qk_dim", [3, 4])
|
| 70 |
-
@pytest.mark.parametrize(
|
| 71 |
-
"dtype, atol, rtol",
|
| 72 |
-
[
|
| 73 |
-
(torch.float32, 1e-5, 1e-5),
|
| 74 |
-
pytest.param(
|
| 75 |
-
torch.bfloat16,
|
| 76 |
-
1e-1,
|
| 77 |
-
1e-5,
|
| 78 |
-
marks=pytest.mark.skipif(not supports_bfloat16(), reason="bfloat16 not supported on this GPU"),
|
| 79 |
-
),
|
| 80 |
-
],
|
| 81 |
-
)
|
| 82 |
-
@pytest.mark.parametrize("conj", [False, True])
|
| 83 |
-
@pytest.mark.flaky(max_runs=2, min_passes=1)
|
| 84 |
-
def test_rotary_equivalence(batch_size, nheads, seqlen, headdim, rotary_dim, qk_dim, dtype, atol, rtol, conj):
|
| 85 |
-
device = infer_device()
|
| 86 |
-
if device is None:
|
| 87 |
-
pytest.skip("No suitable device found for testing")
|
| 88 |
-
|
| 89 |
-
if qk_dim == 4:
|
| 90 |
-
q_shape = (batch_size, seqlen, nheads, headdim)
|
| 91 |
-
cos_sin_shape = (seqlen, 1, rotary_dim)
|
| 92 |
-
elif qk_dim == 3:
|
| 93 |
-
q_shape = (batch_size * seqlen, nheads, headdim)
|
| 94 |
-
cos_sin_shape = (batch_size * seqlen, 1, rotary_dim)
|
| 95 |
-
|
| 96 |
-
q_orig = torch.randn(q_shape, device=device, dtype=dtype)
|
| 97 |
-
k_orig = torch.randn(q_shape, device=device, dtype=dtype)
|
| 98 |
-
cos = torch.randn(cos_sin_shape, device=device, dtype=dtype)
|
| 99 |
-
sin = torch.randn(cos_sin_shape, device=device, dtype=dtype)
|
| 100 |
-
|
| 101 |
-
q_kernel, k_kernel = q_orig.clone(), k_orig.clone()
|
| 102 |
-
q_torch, k_torch = q_orig.clone(), k_orig.clone()
|
| 103 |
-
|
| 104 |
-
q_torch_out, k_torch_out = apply_rotary_torch_wrapper(q_torch, k_torch, cos, sin, conj)
|
| 105 |
-
apply_rotary_kernel_wrapper(q_kernel, k_kernel, cos, sin, conj)
|
| 106 |
-
|
| 107 |
-
# verify the rotation results of Q and K are consistent
|
| 108 |
-
try:
|
| 109 |
-
assert torch.allclose(q_torch_out, q_kernel, atol=atol, rtol=rtol), "Rotary transformation results for Q do not match"
|
| 110 |
-
except AssertionError:
|
| 111 |
-
diff_q = torch.abs(q_torch_out - q_kernel)
|
| 112 |
-
max_diff_q = torch.max(diff_q)
|
| 113 |
-
print(f"Max difference for Q: {max_diff_q}")
|
| 114 |
-
raise
|
| 115 |
-
try:
|
| 116 |
-
assert torch.allclose(k_torch_out, k_kernel, atol=atol, rtol=rtol), "Rotary transformation results for K do not match"
|
| 117 |
-
except AssertionError:
|
| 118 |
-
diff_k = torch.abs(k_torch_out - k_kernel)
|
| 119 |
-
max_diff_k = torch.max(diff_k)
|
| 120 |
-
print(f"Max difference for K: {max_diff_k}")
|
| 121 |
-
raise
|
| 122 |
-
|
| 123 |
-
# verify the non-rotated part of Q and K remains unchanged
|
| 124 |
-
if (2 * rotary_dim) < headdim:
|
| 125 |
-
assert torch.equal(
|
| 126 |
-
q_kernel[..., 2 * rotary_dim:], q_orig[..., 2 * rotary_dim:]
|
| 127 |
-
), "Non-rotated part of Q should be unchanged"
|
| 128 |
-
assert torch.equal(
|
| 129 |
-
k_kernel[..., 2 * rotary_dim:], k_orig[..., 2 * rotary_dim:]
|
| 130 |
-
), "Non-rotated part of K should be unchanged"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/utils.py
DELETED
|
@@ -1,23 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
def infer_device():
|
| 5 |
-
"""
|
| 6 |
-
Get current device name based on available devices
|
| 7 |
-
"""
|
| 8 |
-
if torch.cuda.is_available(): # Works for both Nvidia and AMD
|
| 9 |
-
return "cuda"
|
| 10 |
-
elif torch.xpu.is_available():
|
| 11 |
-
return "xpu"
|
| 12 |
-
else:
|
| 13 |
-
return None
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def supports_bfloat16():
|
| 17 |
-
device = infer_device()
|
| 18 |
-
if device == "cuda":
|
| 19 |
-
return torch.cuda.get_device_capability() >= (8, 0) # Ampere and newer
|
| 20 |
-
elif device == "xpu":
|
| 21 |
-
return True
|
| 22 |
-
else:
|
| 23 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/rotary/__init__.py
DELETED
|
@@ -1,19 +0,0 @@
|
|
| 1 |
-
from typing import Tuple
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
from ._ops import ops
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
def apply_rotary(
|
| 8 |
-
x1: torch.Tensor,
|
| 9 |
-
x2: torch.Tensor,
|
| 10 |
-
cos: torch.Tensor,
|
| 11 |
-
sin: torch.Tensor,
|
| 12 |
-
out1: torch.Tensor,
|
| 13 |
-
out2: torch.Tensor,
|
| 14 |
-
conj: bool,
|
| 15 |
-
):
|
| 16 |
-
ops.apply_rotary(x1, x2, cos, sin, out1, out2, conj)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
__all__ = ["apply_rotary"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch-ext/torch_binding.cpp
DELETED
|
@@ -1,54 +0,0 @@
|
|
| 1 |
-
#include <torch/all.h>
|
| 2 |
-
|
| 3 |
-
#if defined(CUDA_KERNEL)
|
| 4 |
-
#include <c10/cuda/CUDAGuard.h>
|
| 5 |
-
#elif defined(XPU_KERNEL)
|
| 6 |
-
#include <c10/core/DeviceGuard.h>
|
| 7 |
-
#endif
|
| 8 |
-
|
| 9 |
-
#include "registration.h"
|
| 10 |
-
|
| 11 |
-
#define CHECK_DEVICE(x) TORCH_CHECK(x.device().type() == torch::kCUDA || x.device().type() == torch::kXPU, #x " must be on CUDA or XPU")
|
| 12 |
-
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
| 13 |
-
|
| 14 |
-
void _apply_rotary(torch::Tensor const &x1, torch::Tensor const &x2,
|
| 15 |
-
torch::Tensor const &cos, torch::Tensor const &sin,
|
| 16 |
-
torch::Tensor &out1, torch::Tensor &out2,
|
| 17 |
-
bool const conj);
|
| 18 |
-
|
| 19 |
-
void apply_rotary(torch::Tensor const &x1, torch::Tensor const &x2,
|
| 20 |
-
torch::Tensor const &cos, torch::Tensor const &sin,
|
| 21 |
-
torch::Tensor &out1, torch::Tensor &out2,
|
| 22 |
-
bool const conj) {
|
| 23 |
-
CHECK_DEVICE(x1); CHECK_DEVICE(x2);
|
| 24 |
-
CHECK_DEVICE(cos); CHECK_DEVICE(sin);
|
| 25 |
-
CHECK_DEVICE(out1); CHECK_DEVICE(out1);
|
| 26 |
-
TORCH_CHECK(x1.dtype() == x2.dtype());
|
| 27 |
-
TORCH_CHECK(cos.dtype() == sin.dtype());
|
| 28 |
-
TORCH_CHECK(out1.dtype() == out2.dtype());
|
| 29 |
-
TORCH_CHECK(x1.dtype() == cos.dtype());
|
| 30 |
-
TORCH_CHECK(x1.dtype() == out1.dtype());
|
| 31 |
-
TORCH_CHECK(x1.sizes() == x2.sizes());
|
| 32 |
-
TORCH_CHECK(cos.sizes() == sin.sizes());
|
| 33 |
-
TORCH_CHECK(out1.sizes() == out2.sizes());
|
| 34 |
-
|
| 35 |
-
#if defined(CUDA_KERNEL)
|
| 36 |
-
// Otherwise the kernel will be launched from cuda:0 device
|
| 37 |
-
at::cuda::CUDAGuard device_guard{x1.device()};
|
| 38 |
-
#elif defined(XPU_KERNEL)
|
| 39 |
-
c10::DeviceGuard device_guard{x1.device()};
|
| 40 |
-
#endif
|
| 41 |
-
_apply_rotary(x1, x2, cos, sin, out1, out2, conj);
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
| 45 |
-
ops.def("apply_rotary(Tensor x1, Tensor x2, Tensor cos, Tensor sin,"
|
| 46 |
-
"Tensor! out1, Tensor! out2, bool conj) -> ()");
|
| 47 |
-
#if defined(CUDA_KERNEL)
|
| 48 |
-
ops.impl("apply_rotary", torch::kCUDA, &apply_rotary);
|
| 49 |
-
#elif defined(XPU_KERNEL)
|
| 50 |
-
ops.impl("apply_rotary", torch::kXPU, &apply_rotary);
|
| 51 |
-
#endif
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
-
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|