modify config file to match model implementation
Browse files- config.yaml +7 -11
config.yaml
CHANGED
|
@@ -12,22 +12,18 @@ encoder_conf:
|
|
| 12 |
dropout_rate: 0.1
|
| 13 |
positional_dropout_rate: 0.1
|
| 14 |
attention_dropout_rate: 0.1
|
| 15 |
-
input_layer: '
|
| 16 |
normalize_before: true
|
| 17 |
cnn_module_kernel: 15
|
| 18 |
use_cnn_module: true
|
| 19 |
activation_type: 'swish'
|
| 20 |
-
pos_enc_layer_type: '
|
| 21 |
-
selfattention_layer_type: '
|
| 22 |
causal: false
|
| 23 |
use_dynamic_chunk: false
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
right_context_sizes: [128, 128, 128]
|
| 28 |
-
limited_decoding_chunk_sizes: [64, 128, 256]
|
| 29 |
-
limited_left_chunk_sizes: [128, 256, 128]
|
| 30 |
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
| 31 |
use_dynamic_left_chunk: false
|
| 32 |
-
|
| 33 |
-
freeze_subsampling_layer: false
|
|
|
|
| 12 |
dropout_rate: 0.1
|
| 13 |
positional_dropout_rate: 0.1
|
| 14 |
attention_dropout_rate: 0.1
|
| 15 |
+
input_layer: 'dw_striding' # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
| 16 |
normalize_before: true
|
| 17 |
cnn_module_kernel: 15
|
| 18 |
use_cnn_module: true
|
| 19 |
activation_type: 'swish'
|
| 20 |
+
pos_enc_layer_type: 'chunk_rel_pos'
|
| 21 |
+
selfattention_layer_type: 'chunk_rel_seflattn'
|
| 22 |
causal: false
|
| 23 |
use_dynamic_chunk: false
|
| 24 |
+
dynamic_chunk_sizes: [64, 128, 256]
|
| 25 |
+
dynamic_right_context_sizes: [128, 128, 128]
|
| 26 |
+
dynamic_left_context_sizes: [128, 256, 128]
|
|
|
|
|
|
|
|
|
|
| 27 |
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
| 28 |
use_dynamic_left_chunk: false
|
| 29 |
+
dynamic_conv: true
|
|
|