File size: 11,691 Bytes
d56eb1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""# `shared_space_config.py`
#### `*Config`
"""
from typing import Optional
import torch
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
"""`def make_shorthand`"""
def make_shorthand(model_cfg):
"""
Takes an instance subencoder `*Config` and constructs a shorthand
name for the model based on settings.
"""
dense_str = str(model_cfg.num_dense_layers) + "mha + "
if model_cfg.o_shared_dim is not None:
o_str = "." + str(model_cfg.o_shared_dim)
else:
o_str = ""
# If no output subspace is used, the dimension will show as -1.
attn_str = (
dense_str
+ "mla."
+ str(model_cfg.q_shared_dim)
+ "."
+ str(model_cfg.kv_shared_dim)
+ o_str
)
# MLP Configuration
if model_cfg.ffn_decompose:
dense_str = (
str(model_cfg.num_dense_layers)
+ "mlp."
+ str(model_cfg.intermediate_size)
+ " + "
)
mlp_str = (
dense_str
+ str(model_cfg.num_hidden_layers - model_cfg.num_dense_layers)
+ "dcmp."
+ "x"
+ str(model_cfg.intermediate_size)
+ "."
+ str(model_cfg.ffn_rank)
)
else:
mlp_str = "mlp." + str(model_cfg.intermediate_size)
# Assemble string
shorthand = (
f"{attn_str} - {mlp_str} - "
f"h{model_cfg.hidden_size} - l{model_cfg.num_hidden_layers}"
)
"""
The run name includes training settings
run_name = (
f"{config['stats']['total_elements']} - "
f"{attn_str} - {mlp_str} - "
f"h{model_cfg.hidden_size} - l{model_cfg.num_hidden_layers} - "
f"bs{ptrain_cfg['train_batch_size']} - lr{lr_str} - "
f"seq{ptrain_cfg['max_seq_length']}"
)
"""
return shorthand
class SharedSpaceDecoderConfig(PretrainedConfig):
r"""
Configuration class for SharedSpaceDecoderConfig.
Extends the HuggingFace `PretrainedConfig` to support architectural
variations including:
- Multi-Head Latent Attention (MLA)
- Decomposed MLPs (low-rank FFNs)
- Flexible attention backends (eager, flash, sdpa)
- Explicit shared subspaces for Q, K, V, and O projections
This config does not infer any defaults based on `hidden_size`. All
dimensions and ranks must be explicitly specified. If required values are
missing, a `ValueError` is raised during initialization.
----------------------
Core Model Parameters:
----------------------
- vocab_size (`int`) β Vocabulary size.
- hidden_size (`int`) β Model hidden dimension.
- num_hidden_layers (`int`) β Number of transformer blocks.
- intermediate_size (`int`) β Feed-forward hidden dimension.
- hidden_act (`str`) β Activation function.
- hidden_dropout_prob (`float`) β Dropout after projections and FFNs.
- attention_dropout_prob (`float`) β Dropout applied to attention scores.
- max_position_embeddings (`int`) β Max sequence length.
- initializer_range (`float`) β Stddev of weight init.
- layer_norm_eps (`float`) β Epsilon for LayerNorm.
- rms_norm_ps (`float`) β Epsilon for RMSNorm
- classifier_dropout (`float` or None) β Dropout for final classifier.
- vocab_subspace
- vocab_rank
----------------------------------
Multi-Head Latent Attention (MLA):
----------------------------------
- num_attention_heads (`int`) β Number of attention heads.
- q_shared_dim (`int`) β Rank of the shared query subspace.
- kv_shared_dim (`int`) β Rank of the shared key/value subspace.
- output_subspace (`bool`) β Whether to use a shared latent subspace for output projections.
- o_shared_dim (`int`) β Rank of the shared output subspace (required if `output_subspace=True`).
- qk_private_dim (`int`) β Query/key private dimension per head.
- vo_private_dim (`int`) β Value/output private dimension per head.
- rope_dims (`int`) β Number of head dimensions carrying RoPE.
- nope_dims (`int`) β Non-positional encoding dimensions.
- rope_theta (`float`) β Base frequency used for RoPE.
- rope_scaling (`dict` or None) β HF-style scaling dict for RoPE.
- attention_bias (`bool`) β Whether to include bias terms in Q/K/V projections.
- num_dense_layers (`int`) β Number of leading layers that do not use
subspaces for attention or FFNs.
- attention_backend (`str`) β Must be one of `"eager"`, `"flash_attention_2"`, or `"sdpa"`.
----------------------
Decomposed MLP (Low-Rank FFN):
----------------------
- ffn_decompose (`bool`) β Whether to enable low-rank FFNs.
- ffn_rank (`int`) β Rank of the shared FFN latent space (required if `ffn_decompose=True`).
----------------------
Validation Behavior:
----------------------
Raises `ValueError` at init time if:
- FFN decomposition is enabled without specifying `ffn_rank`.
- An unknown `attention_backend` is provided.
"""
model_type = "shared_subspace_decoder"
def __init__(
self,
# === Core Model ===
vocab_size: int = 30522,
hidden_size: int = 512,
num_hidden_layers: int = 12,
intermediate_size: int = 3072,
hidden_dropout_prob=0.1,
attention_dropout_prob=0.1,
max_position_embeddings: int = 2048,
initializer_range=0.02,
layer_norm_eps=1e-12,
rms_norm_eps=1e-6, # Their default, but confirm in config.
norm_type="layernorm", # Choice between "layernorm" and "rmsnorm"
classifier_dropout=None,
vocab_subspace=False,
vocab_rank=None,
tie_word_embeddings=True,
# === Multi-Head Latent Attention ===
num_attention_heads: int = 16,
rope_dims: int = 16,
q_shared_dim: int = None,
kv_shared_dim: int = None,
o_shared_dim=None, # If None, no output subspace is used
# Private head dimensions
qk_private_dim: int = None, # Query/key private dimension per head
vo_private_dim: int = None, # Value/output private dimension per head
nope_dims: int = None, # Non-positional encoding dimensions
attention_backend="eager",
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
# === MLA Composition ===
num_dense_layers=12, # dense MHA layers before MLA starts
# === Decomposed MLP ===
ffn_decompose=False,
ffn_rank=None,
**kwargs
) -> None:
super().__init__(**kwargs)
# === Core Model ===
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.rms_norm_eps = rms_norm_eps
self.norm_type = norm_type
self.classifier_dropout = classifier_dropout
self.vocab_subspace = vocab_subspace
self.vocab_rank = vocab_rank
self.tie_word_embeddings = tie_word_embeddings
# === MLA ===
self.num_attention_heads = num_attention_heads
self.rope_dims = rope_dims
self.q_shared_dim = q_shared_dim
self.kv_shared_dim = kv_shared_dim
self.o_shared_dim = o_shared_dim
# Private head dimensions
self.qk_private_dim = qk_private_dim
self.vo_private_dim = vo_private_dim
self.nope_dims = nope_dims
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.num_dense_layers = num_dense_layers
# === Decomposed FFN ===
self.ffn_decompose = ffn_decompose
self.ffn_rank = ffn_rank
# === Attention backend ===
self.attention_backend = attention_backend
# === Validation ===
# TODO - Somewhere during training these get instantiated with bad
# values...
#self._validate()
#print(f" > SubEnc *Config.init: {make_shorthand(self)}\n")
def _validate(self):
# === Model ===
if self.num_dense_layers > self.num_hidden_layers:
raise ValueError("`num_dense_layers` must be <= `num_hidden_layers`")
if self.vocab_subspace and self.vocab_rank is None:
raise ValueError("`vocab_rank` must be set when `vocab_subspace=True`")
# === MLA Validation ===
# At least one of q_shared_dim or kv_shared_dim must be set if we have subspace layers
if self.num_dense_layers < self.num_hidden_layers and self.q_shared_dim is None and self.kv_shared_dim is None:
raise ValueError("At least one of q_shared_dim or kv_shared_dim must be set when there are subspace layers")
# Validate that private dimensions are set
if self.qk_private_dim is None or self.vo_private_dim is None:
raise ValueError("Must set qk_private_dim and vo_private_dim")
if self.nope_dims is None:
raise ValueError("Must set nope_dims")
# === Decomposed FFN ===
if self.ffn_decompose and self.ffn_rank is None:
raise ValueError("`ffn_rank` must be set when `ffn_decompose=True`")
if self.ffn_decompose and self.num_dense_layers >= self.num_hidden_layers:
raise ValueError("`ffn_decompose` was set but `num_dense` is >= number of layers")
# === Attention Backend ===
valid_backends = ["eager", "flash_attention_2", "sdpa"]
if self.attention_backend not in valid_backends:
raise ValueError(f"Unknown attention backend: {self.attention_backend}, options are {valid_backends}")
# === Norm Type ===
valid_norm_types = ["layernorm", "rmsnorm"]
if self.norm_type not in valid_norm_types:
raise ValueError(f"Unknown norm type: {self.norm_type}, options are {valid_norm_types}")
#### `get_config`
import json
def get_config(filename):
# Load the config file.
with open(filename) as f:
full_cfg = json.load(f)
# Strict key check on the model configuration.
# Get the list of keys allowed / required by `*Config`
valid_keys = SharedSpaceDecoderConfig.__init__.__code__.co_varnames
# Remove `self` and `kwargs`
valid_keys = set(valid_keys) - {"self", "kwargs"}
# Compare the set of keys in the json file vs `*Config`
extra_keys = set(full_cfg["model"]) - valid_keys
missing_keys = valid_keys - set(full_cfg["model"])
# If there any in the `json` that aren't in `*Config`,
if extra_keys:
# List them for the user.
raise ValueError(f"Unknown keys in config: {sorted(extra_keys)}")
# If the json config is missing required keys,
if missing_keys:
# List them for the user.
raise ValueError(f"config json is missing: {sorted(missing_keys)}")
# Will raise TypeError, by design, if required args are missing
# The asterisks unpack the dictionary into a list of keywords as though
# all of the settings were writting out individually.
model_cfg = SharedSpaceDecoderConfig(**full_cfg["model"])
return full_cfg, model_cfg
|