Upload embeddinggemma-300m.toml with huggingface_hub
Browse files- embeddinggemma-300m.toml +33 -0
embeddinggemma-300m.toml
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# EmbeddingGemma 300M LiteRT-LM Configuration
|
| 2 |
+
# Use this with the litertlm_builder_cli to create .litertlm file
|
| 3 |
+
#
|
| 4 |
+
# Usage:
|
| 5 |
+
# cd deps/LiteRT-LM
|
| 6 |
+
# bazel run //schema/py:litertlm_builder_cli -- \
|
| 7 |
+
# toml --path ../../models/embeddinggemma-300m.toml \
|
| 8 |
+
# output --path ../../models/embeddinggemma-300m.litertlm
|
| 9 |
+
|
| 10 |
+
[system_metadata]
|
| 11 |
+
entries = [
|
| 12 |
+
{ key = "model_name", value_type = "String", value = "EmbeddingGemma-300M" },
|
| 13 |
+
{ key = "model_version", value_type = "String", value = "1.0" },
|
| 14 |
+
{ key = "embedding_dim", value_type = "Int32", value = 256 },
|
| 15 |
+
{ key = "author", value_type = "String", value = "Google" }
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
# Section 1: TFLite Embedder Model
|
| 19 |
+
[[section]]
|
| 20 |
+
section_type = "TFLiteModel"
|
| 21 |
+
model_type = "EMBEDDER"
|
| 22 |
+
# Use the seq512 version (best for tool descriptions)
|
| 23 |
+
data_path = "/home/mac/git/mcp-agent/models/embeddinggemma-300M_seq512_mixed-precision.tflite"
|
| 24 |
+
additional_metadata = [
|
| 25 |
+
{ key = "embedding_dimensions", value_type = "Int32", value = 256 },
|
| 26 |
+
{ key = "max_seq_length", value_type = "Int32", value = 512 }
|
| 27 |
+
]
|
| 28 |
+
|
| 29 |
+
# Section 2: HuggingFace Tokenizer (if available)
|
| 30 |
+
# Uncomment if you have the tokenizer.json
|
| 31 |
+
# [[section]]
|
| 32 |
+
# section_type = "HF_Tokenizer"
|
| 33 |
+
# data_path = "tokenizer.json"
|