SentenceTransformer
This is a sentence-transformers model distilled from Snowflake/snowflake-arctic-embed-l-v2.0 . It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
"Cancer type: Conventional high\u2011grade (grade\u202f3) chondrosarcoma of the right scapula \nHistology: Pleomorphic sarcoma with chondroid differentiation (high\u2011grade conventional chondrosarcoma) \nCurrent extent: Stage\u00a0IV/metastatic \u2013 pulmonary metastases (numerous bilateral nodules, stable) and progressive hepatic metastasis (now 4.2\u202fcm, causing biliary obstruction) \n\nBiomarkers: \n- IDH2 p.R172S mutation (initial NGS low VAF, later VAF\u202f\u2248\u202f18\u202f%) \n- TP53 p.R282W loss\u2011of\u2011function missense mutation \n- CDKN2A homozygous deletion (p16 loss) \n- MDM2 amplification (\u2248\u202f12\u2011fold) \n- FGFR2 amplification \n- COL2A1 p.R1060C (variant of uncertain significance) \n- Microsatellite stability (MS\u2011Stable) \n- PD\u2011L1 IHC 0\u202f% TPS (negative) \n- Tumor mutational burden \u2248\u202f9\u202fmut/Mb (moderate)\n\nTreatment history: \n# 2020\u201111\u201123 onward: Diagnosis confirmed by pathology. Initiated local external beam radiotherapy to the scapular primary (exact dates not specified, commenced shortly after diagnosis). \n# Approx. 2022\u201109\u2011xx to 2022\u201110\u2011xx: Off\u2011label regorafenib, initiated for systemic control; duration\u202f~\u202f4\u202fweeks. Discontinued because of Grade\u202f3 hypertension and Grade\u202f3 hand\u2011foot skin reaction. \n# Early 2022 (approximately February\u2013March): Additional systemic therapy attempted (unspecified agent) but halted \u201csix weeks ago\u201d as of 2022\u201105\u201111 due to lack of radiographic response and toxicity. Exact drug unknown; recorded as therapy discontinued. \n# Ongoing: Supportive care with opioid analgesics for scapular pain; no further active anticancer therapy after regorafenib cessation given poor performance status (ECOG\u202f\u2265\u202f3) and limited expected benefit.",
]
documents = [
'4. Cancer type allowed: solid tumor (all tissues). Histology allowed: any malignant histologic subtype provided the tumor harbours an IDH1 mutation. Cancer burden allowed: advanced or metastatic disease refractory to conventional therapeutic options or intolerant of such therapy; radiographically measurable disease not previously subjected to radiation, chemo‑embolisation, radio‑embolisation or other local ablative technique. Prior treatment required: evidence of refractoriness/intolerance to standard-of-care modalities. Prior treatment excluded: n/a. Biomarkers required: IDH1 gene mutation determined on local diagnostic platform (centrally reassessed retrospectively). Biomarkers excluded: n/a.',
'1. Cancer type allowed: meningioma. Histology allowed: World Health Organization grade\u202fII or grade\u202fIII meningioma. Cancer burden allowed: recurrent or progressively growing intracranial disease with at least one meas\xadurable lesion ≥10\u202fmm on magnetic resonance imaging. Prior treatment required: prior neurosurgical resection of the index meningioma **and** prior cranial radiation therapy directed at the progressing tumour. Prior treatment excluded: • more than two distinct courses of radiation therapy administered for meningioma • a documented clinical diagnosis of Neurofibroma\xadtosis type\u202f2 OR a molecularly identified NF2 alteration • three or more prior systemic chemotherapy regimens delivered for meningeal disease. Biomarkers required: none noted. Biomarkers excluded: neurofi bromas tos i s\u202ftype\u202f2 (clinical or molecular).',
'1. Cancer type allowed: renal cell carcinoma. Histology allowed: clear cell renal cell carcinoma. Cancer burden allowed: advanced or metastatic disease. Prior treatment required: none. Prior treatment excluded: any prior systemic therapy for advanced or metastatic renal cell carcinoma; prior belzutifan or other HIF‑2α inhibitor; prior cabozantinib. ',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 1024] [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.8427, 0.1946, 0.3175]])
Training Details
Training Datasets
Unnamed Dataset
- Size: 415,029 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 200 tokens
- mean: 569.76 tokens
- max: 1231 tokens
- min: 14 tokens
- mean: 121.13 tokens
- max: 459 tokens
- min: 0.0
- mean: 0.73
- max: 1.0
- Samples:
sentence_0 sentence_1 label Cancer type: Epithelioid sarcoma (classic “distal” type)
Histology: High‑grade (grade 2) epithelioid sarcoma with loss of INI1 (SMARCB1) expression
Current extent: Metastatic disease (bilateral pulmonary nodules and a solitary hepatic lesion)
Biomarkers:
- SMARCB1 biallelic deletion → complete loss of nuclear INI1 (predictive for EZH2 inhibition)
- PTEN truncating mutation (loss of function)
- KRAS p.G13D activating mutation (confers MAPK pathway activation, predicts resistance to EGFR‐directed agents)
- CDKN2A homozygous deletion
- TP53 splice‑site variant (non‑functional p53)
- Low‑level EGFR copy number gain (≈ 3 copies)
Treatment history:
# 2017‑mid – early 2018: Neoadjuvant doxorubicin × 4 cycles (anthracycline chemotherapy) – administered prior to definitive local therapy (exact dates not specified)
# Early 2018 (approx. Mar‑Apr 2018): External beam radiation therapy, 45 Gy in 25 fractions to the left hand (definitive EBRT) – completed by 2018‑04‑21 (acu...3. Cancer type allowed: tumours deficient in INI1 (or otherwise INI1‑negative/aberrant) irrespective of organ origin, and any solid tumour harbouring an activating (“gain‑of‑function”) mutation in EZH2. Histology allowed: diverse solid‐tumour histologies meeting the INI1‑loss definition or carrying an EZH2 GOF point mutation/amplification. Cancer burden allowed: metastatic disease or unresectable locally advanced disease that is relapsed or refractory after prior therapy (including cases progressing within six months before enrolment). Prior treatment required: any preceding anticancer therapy whose residual toxicities have resolved to ≤grade 1. Prior treatment excluded: none stated specifically for these cohorts. Biomarkers required: (a) loss of INI1 protein by IHC or bi‑biallelic INI1 loss/mutation confirmed genetically, or (b) demonstrable EZH2 gain‑of‑function mutation/amplification identified by validated molecular platform. Biomarkers excluded: none.1.0Cancer type: Non‑small cell lung cancer (lung adenocarcinoma)
Histology: Moderately differentiated invasive adenocarcinoma, TTF‑1 +, Napsin‑A +
Current extent: Metastatic (thoracic disease stable, solitary treated cerebellar brain metastasis, no other extracranial sites identified)
Biomarkers:
• EGFR exon 19 sensitizing deletion (present on all specimens)
• PD‑L1 Tumor Proportion Score ≈30 % (initial PET/CT report)
• Acquired EGFR C797S substitution (NGS 2022‑08‑20)
• MET copy number amplification ≈9 copies (clinical note 2023‑05‑18)
• Tumor mutational burden 4.2 Mut/Mb (low)
• Microsatellite stable / proficient mismatch repair (NGS 2022‑08‑20)
Treatment history:
# 2020‑05‑12 to 2020‑07‑30: Neoadjuvant cisplatin 75 mg/m² + pemetrexed 500 mg/m² q21 days – three cycles completed (last dose approx June 2021). Best response: partial reduction of primary tumor (≈44 % decrease on 2021‑04‑12 imaging).
# Late 2021 (post‑neoadjuvant): VATS left lower‑lobe wedge resect...1. Cancer type allowed: non small cell lung cancer. Histology allowed: non small cell lung cancer. Cancer burden allowed: advanced unresectable or metastatic disease. Prior treatment required: ≤ five prior anticancer regimens permissible. Prior treatment excluded: prior anti‑programmed death receptor 1, anti‑programmed death ligand 1, or anti‑programmed death ligand 2 antibody exposure. Biomarkers required: ☐. Biomarkers excluded: ☐.1.0Cancer type: Urinary bladder urothelial carcinoma
Histology: High‑grade papillary urothelial carcinoma, WHO/ISUT Grade III
Current extent: Metastatic (progressive disease with FDG‑avid left supraclavicular lymph node and suspected pulmonary involvement; persistent pelvic nodal disease)
Biomarkers:
• FGFG3 S249C mutation
• TP53 R248W mutation
• CDKN2A loss
• ERBB2 amplification (copy number = 6)
• PIK3CA E545K mutation
• KDM6A truncating alteration
• MDM2 amplification
• STAG2 truncating alteration
• TERT promoter −124 C>T mutation
• Low PD‑L1 tumor proportion score ≈ 5%
Treatment history:
# 2012‑11‑21 → Initial transurethral resection of bladder tumor (TURBT) showing high‑grade papillary urothelial carcinoma invading muscularis propria (pT2).
# Early 2013 → Neoadjuvant MVAC chemotherapy (≥3 cycles reported by 09‑15‑2013; total 4 cycles completed by October 2013). Partial radiographic response of primary lesion, stable pelvic nodal disease.
# 10‑13‑20...11. Cancer type allowed: Urothelial/bladder cancer. Histology allowed: transitional cell carcinoma. Cancer burden allowed: advanced/metastatic disease. Prior treatment required: none specific. Prior treatment excluded: none beyond the ubiquitous recent‑therapy ban. Biomarkers required: none. Biomarkers excluded: none.1.0 - Loss:
OnlineContrastiveLoss
Unnamed Dataset
- Size: 309,687 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 196 tokens
- mean: 568.43 tokens
- max: 1095 tokens
- min: 15 tokens
- mean: 124.96 tokens
- max: 452 tokens
- Samples:
sentence_0 sentence_1 Cancer type: Colorectal adenocarcinoma
Histology: Moderately differentiated invasive adenocarcinoma, Grade 2
Current extent: Metastatic (initially stage IV with hepatic metastases and a solitary right frontal brain metastasis; brain lesion treated with stereotactic radiosurgery and shows complete radiographic remission; hepatic disease persists with intermittent progression)
Biomarkers: KRAS wild‑type; Microsatellite stable (MS‑stable); Tumor mutational burden low (≈4 mutations/Mb); IDH2 R172K activating mutation (VAF ~8%); additional somatic alterations – APC truncation, TP53 missense, SMAD4 loss, MYC/CDK6 amplifications; no germline‑relevant BRCA1/2 changes
Treatment history:
# 2013‑05‑20: Right hemicolectomy (curative resection of primary colonic tumor)
# 2013‑05‑20: Stereotactic radiosurgery to solitary right frontal brain metastasis (single fraction 18 Gy) – resulted in complete radiographic remission, no residual neurological symptoms
# 2013‑01‑03 to 2013‑05‑20: F...1. Cancer type allowed: various solid malignant neoplasms excluding central nervous system. Histology allowed: diverse solid tumor histologies. Cancer burden allowed: advanced or metastatic disease, recurrent or progressive after standard therapy. Prior treatment required: disease must have progressed after receipt of standard therapeutic regimen (which may include targeted therapy against mutant IDH1/IDH2). Prior treatment excluded: none specified beyond what is covered under exclusion criteria. Biomarkers required: presence of an IDH1 and/or IDH2 gene mutation (to be determined using archival tumor specimen or fresh biopsy). Biomarkers excluded: none.Cancer type: Breast cancer
Histology: Invasive (ductal) carcinoma, NST, grade 2, hormone‑receptor‑positive (ER⁺/PR⁺), HER2‑negative, right breast
Current extent: Metastatic (initially bone‐only, later hepatic progression; disease remains active/metastatic as of latest note in 02/2014)
Biomarkers:
- Estrogen receptor positive, Progesterone receptor positive, HER2 negative (by IHC/FISH at diagnosis)
- ESR1 Y537S mutation (detected 09/2013) – associated with resistance to aromatase inhibitors
- PIK3CA E545K activating mutation (detected 09/2013)
- Microsatellite instability stable (MSI‑S) (09/2013)
- Tumor mutational burden 8 mutations/Mb (intermediate) (09/2013)
Treatment history:
# 02/03/2012 – ~05/07/2012: Letrozole 2.5 mg orally once daily (first‑line aromatase inhibitor). Achieved stable bone disease on serial scans but met RECIST criteria for radiographic progression (new hepatic lesion) after ≈4 months.
# ~05/2013 – early 02/2014: Everolimus combined with L...2. Cancer type allowed: metastatic breast cancer. Histology allowed: invasive breast adenocarcinoma. Cancer burden allowed: hormonereceptor‑positive, human epidermal growth factor receptor 2‑negative metastatic disease; absence of currently active or symptomatic central nervous system involvement. Prior treatment required: endocrine‑resistance demonstrated; receipt of at least one line containing combined hormonal therapy together with an FDA‑approved cyclin‑dependent kinase 4/6 inhibitor; total number of prior systemic regimens for locoregionally unresectable/metastatic disease limited to ≥ 1 and ≤ 4. Prior treatment excluded: n/a. Biomarkers required: estrogen‑receptor and/or progesterone‑receptor positivity; HER2 negativity verified according to guideline testing methodology. Biomarkers excluded: n/a.Cancer type: Ewing sarcoma
Histology: Small round blue cell tumor, CD99⁺, NKX2.2⁺, EWSR1‑FLI1 fusion-positive
Current extent: Metastatic (persistent FDG‑avid L2 vertebral body lesion, stable disease)
Biomarkers:
- Confirmed EWSR1‑FLI1 translocation (detected 2017‑06‑01 pathology, reconfirmed 2020‑05‑08 NGS)
- CDK4 amplification (high level, 2020‑05‑08 NGS)
- CCND1 copy‑number gain (modest, 2020‑05‑08 NGS)
- TP53 p.R175H missense mutation (NGS Jan 2025)
- ATRX splice‑variant alteration (NGS Jan 2025)
- STAG2 frameshift loss‑of‑function (NGS Jan 2025)
Treatment history:
# 2017‑06‑01 to 2018‑04‑xx: Neoadjuvant interval‑compressed VDC/IE (vincristine, doxorubicin, cyclophosphamide alternating with ifosfamide/etoposide) – 8 cycles total (partial response observed on 2018‑05‑23 MRI, ~40% shrinkage)
# 2018‑09‑29 to 2018‑09‑29: Left scapular partial scapulectomy with prosthetic reconstruction (negative surgical margins)
# 2018‑10‑09 to 2018‑10‑09: Adjuvant external‑...4. Cancer type allowed: Ewing sarcoma. Histology allowed: classic Ewing sarcoma (small round blue cell tumour) with characteristic marker profile (CD99 positive, keratin variable, INI1 retained) confirming diagnosis. Cancer burden allowed: metastatic disease or unresectable locally advanced disease that is relapsed or refractory after prior therapy. Prior treatment required: any preceding anticantic therapy whose residual toxicities have resolved to ≤grade 1. Prior treatment excluded: none stated specifically for this cohort. Biomarkers required: morphological features compatible with Ewing sarcoma together with supportive immunoprofile; no additional molecular prerequisite stipulated for entry into this exploratory cohort. Biomarkers excluded: none. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 6per_device_eval_batch_size: 6num_train_epochs: 2multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 6per_device_eval_batch_size: 6per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0194 | 500 | 0.4392 |
| 0.0387 | 1000 | 0.4558 |
| 0.0581 | 1500 | 0.457 |
| 0.0775 | 2000 | 0.4577 |
| 0.0969 | 2500 | 0.4412 |
| 0.1162 | 3000 | 0.4488 |
| 0.1356 | 3500 | 0.4486 |
| 0.1550 | 4000 | 0.4616 |
| 0.1744 | 4500 | 0.4728 |
| 0.1937 | 5000 | 0.4619 |
| 0.2131 | 5500 | 0.4545 |
| 0.2325 | 6000 | 0.4495 |
| 0.2519 | 6500 | 0.4618 |
| 0.2712 | 7000 | 0.4214 |
| 0.2906 | 7500 | 0.4412 |
| 0.3100 | 8000 | 0.4505 |
| 0.3294 | 8500 | 0.4313 |
| 0.3487 | 9000 | 0.4508 |
| 0.3681 | 9500 | 0.4303 |
| 0.3875 | 10000 | 0.4399 |
| 0.4069 | 10500 | 0.448 |
| 0.4262 | 11000 | 0.4408 |
| 0.4456 | 11500 | 0.4337 |
| 0.4650 | 12000 | 0.4273 |
| 0.4843 | 12500 | 0.4385 |
| 0.5037 | 13000 | 0.4437 |
| 0.5231 | 13500 | 0.439 |
| 0.5425 | 14000 | 0.4284 |
| 0.5618 | 14500 | 0.4214 |
| 0.5812 | 15000 | 0.4238 |
| 0.6006 | 15500 | 0.4225 |
| 0.6200 | 16000 | 0.4187 |
| 0.6393 | 16500 | 0.4151 |
| 0.6587 | 17000 | 0.4383 |
| 0.6781 | 17500 | 0.4243 |
| 0.6975 | 18000 | 0.4148 |
| 0.7168 | 18500 | 0.419 |
| 0.7362 | 19000 | 0.4169 |
| 0.7556 | 19500 | 0.4184 |
| 0.7750 | 20000 | 0.4191 |
| 0.7943 | 20500 | 0.4329 |
| 0.8137 | 21000 | 0.4339 |
| 0.8331 | 21500 | 0.4087 |
| 0.8524 | 22000 | 0.4161 |
| 0.8718 | 22500 | 0.4242 |
| 0.8912 | 23000 | 0.4183 |
| 0.9106 | 23500 | 0.4076 |
| 0.9299 | 24000 | 0.4095 |
| 0.9493 | 24500 | 0.4328 |
| 0.9687 | 25000 | 0.4114 |
| 0.9881 | 25500 | 0.4242 |
| 1.0074 | 26000 | 0.4158 |
| 1.0268 | 26500 | 0.3909 |
| 1.0462 | 27000 | 0.3999 |
| 1.0656 | 27500 | 0.4025 |
| 1.0849 | 28000 | 0.4115 |
| 1.1043 | 28500 | 0.3843 |
| 1.1237 | 29000 | 0.4177 |
| 1.1431 | 29500 | 0.4083 |
| 1.1624 | 30000 | 0.4025 |
| 1.1818 | 30500 | 0.4133 |
| 1.2012 | 31000 | 0.4006 |
| 1.2206 | 31500 | 0.3985 |
| 1.2399 | 32000 | 0.3999 |
| 1.2593 | 32500 | 0.394 |
| 1.2787 | 33000 | 0.3927 |
| 1.2980 | 33500 | 0.3964 |
| 1.3174 | 34000 | 0.4001 |
| 1.3368 | 34500 | 0.3956 |
| 1.3562 | 35000 | 0.3899 |
| 1.3755 | 35500 | 0.388 |
| 1.3949 | 36000 | 0.3867 |
| 1.4143 | 36500 | 0.3982 |
| 1.4337 | 37000 | 0.394 |
| 1.4530 | 37500 | 0.3942 |
| 1.4724 | 38000 | 0.3913 |
| 1.4918 | 38500 | 0.3909 |
| 1.5112 | 39000 | 0.3757 |
| 1.5305 | 39500 | 0.3829 |
| 1.5499 | 40000 | 0.3874 |
| 1.5693 | 40500 | 0.3883 |
| 1.5887 | 41000 | 0.3783 |
| 1.6080 | 41500 | 0.4041 |
| 1.6274 | 42000 | 0.403 |
| 1.6468 | 42500 | 0.3806 |
| 1.6662 | 43000 | 0.3825 |
| 1.6855 | 43500 | 0.3944 |
| 1.7049 | 44000 | 0.3956 |
| 1.7243 | 44500 | 0.382 |
| 1.7436 | 45000 | 0.3911 |
| 1.7630 | 45500 | 0.3823 |
| 1.7824 | 46000 | 0.3771 |
| 1.8018 | 46500 | 0.3784 |
| 1.8211 | 47000 | 0.3853 |
| 1.8405 | 47500 | 0.3864 |
| 1.8599 | 48000 | 0.3724 |
| 1.8793 | 48500 | 0.3856 |
| 1.8986 | 49000 | 0.3862 |
| 1.9180 | 49500 | 0.376 |
| 1.9374 | 50000 | 0.377 |
| 1.9568 | 50500 | 0.3937 |
| 1.9761 | 51000 | 0.3819 |
| 1.9955 | 51500 | 0.3899 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.55.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 22