|
|
from typing import Callable, Optional, Tuple |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
from transformers.models.qwen3.modeling_qwen3 import ( |
|
|
ALL_ATTENTION_FUNCTIONS, |
|
|
Cache, |
|
|
FlashAttentionKwargs, |
|
|
Qwen3Attention, |
|
|
Qwen3Config, |
|
|
Qwen3DecoderLayer, |
|
|
Qwen3ForCausalLM, |
|
|
Qwen3Model, |
|
|
eager_attention_forward, |
|
|
rotate_half, |
|
|
) |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def custom_apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1, q_start_idx=0): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors.""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos[..., q_start_idx:, :]) + ( |
|
|
rotate_half(q) * sin[..., q_start_idx:, :] |
|
|
) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
class CustomQwen3Attention(Qwen3Attention): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: Qwen3Config, layer_idx: int): |
|
|
super().__init__(config, layer_idx=layer_idx) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
q_start_idx: int = 0, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
sa_hidden_sates = hidden_states[:, q_start_idx:, :] |
|
|
query_input_shape = sa_hidden_sates.shape[:-1] |
|
|
query_hidden_shape = (*query_input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm( |
|
|
self.q_proj(sa_hidden_sates).reshape(query_hidden_shape) |
|
|
).transpose(1, 2) |
|
|
key_states = self.k_norm( |
|
|
self.k_proj(hidden_states).view(hidden_shape) |
|
|
).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = custom_apply_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin, q_start_idx=q_start_idx |
|
|
) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update( |
|
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
|
) |
|
|
|
|
|
|
|
|
query_states, key_states = ( |
|
|
query_states.to(value_states.dtype), |
|
|
key_states.to(value_states.dtype), |
|
|
) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[ |
|
|
self.config._attn_implementation |
|
|
] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*query_input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
|
|
|
class CustomQwen3DecoderLayer(Qwen3DecoderLayer): |
|
|
def __init__(self, config: Qwen3Config, layer_idx: int): |
|
|
super().__init__(config, layer_idx=layer_idx) |
|
|
self.self_attn = CustomQwen3Attention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: Optional[bool] = False, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
q_start_idx: int = 0, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> Tuple[ |
|
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] |
|
|
]: |
|
|
residual = hidden_states[:, q_start_idx:, ...] |
|
|
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
q_start_idx=q_start_idx, |
|
|
**kwargs, |
|
|
) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
if output_attentions: |
|
|
outputs += (self_attn_weights,) |
|
|
|
|
|
return outputs |
|
|
|
|
|
|
|
|
class CustomQwen3Model(Qwen3Model): |
|
|
def __init__(self, config: Qwen3Config): |
|
|
super().__init__(config) |
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
CustomQwen3DecoderLayer(config, layer_idx) |
|
|
for layer_idx in range(config.num_hidden_layers) |
|
|
] |
|
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
|
|
|
class CustomQwen3ForCausalLM(Qwen3ForCausalLM): |
|
|
def __init__(self, config: Qwen3Config): |
|
|
super().__init__(config) |
|
|
|
|
|
self.model = CustomQwen3Model(config) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|