Update pytorch.bin; Add model and code
Browse files- config.json +59 -0
- diffusion.py +1462 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"T": 0,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"E2D2"
|
| 5 |
+
],
|
| 6 |
+
"attn_backend": "sdpa",
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "diffusion.E2D2Config",
|
| 9 |
+
"AutoModel": "diffusion.E2D2",
|
| 10 |
+
"AutoModelForMaskedLM": "diffusion.E2D2"
|
| 11 |
+
},
|
| 12 |
+
"backbone_config": {
|
| 13 |
+
"_target_": "backbone_encoder_decoder.LLMasEncoderDecoder",
|
| 14 |
+
"attn_backend": "sdpa",
|
| 15 |
+
"freeze_encoder": false,
|
| 16 |
+
"hidden_size": 512,
|
| 17 |
+
"intermediate_size": 1536,
|
| 18 |
+
"keep_top_decoder_layers": false,
|
| 19 |
+
"keep_top_encoder_layers": false,
|
| 20 |
+
"max_length": 256,
|
| 21 |
+
"num_decoder_layers": 4,
|
| 22 |
+
"num_encoder_layers": 28,
|
| 23 |
+
"pretrained_model_name_or_path": "Qwen/Qwen3-0.6B-Base",
|
| 24 |
+
"reinit_decoder": true,
|
| 25 |
+
"reinit_encoder": true,
|
| 26 |
+
"tie_encoder_decoder_weights": false,
|
| 27 |
+
"use_encoder_causal_mask": false,
|
| 28 |
+
"use_gradient_checkpointing": false
|
| 29 |
+
},
|
| 30 |
+
"block_size": 4,
|
| 31 |
+
"bos_token_id": 151643,
|
| 32 |
+
"diffusion_type": "absorbing",
|
| 33 |
+
"eos_token_id": 151643,
|
| 34 |
+
"eval_block_size": 4,
|
| 35 |
+
"keep_clean_bos": true,
|
| 36 |
+
"length": 256,
|
| 37 |
+
"mask_token_id": 151660,
|
| 38 |
+
"model_type": "e2d2",
|
| 39 |
+
"noise_config": {
|
| 40 |
+
"_target_": "noise_schedule_noise_schedules.LinearNoise"
|
| 41 |
+
},
|
| 42 |
+
"pad_token_id": 151643,
|
| 43 |
+
"pad_vocab_size_multiple": 1,
|
| 44 |
+
"shift_logits": false,
|
| 45 |
+
"time_conditioned_backbone": false,
|
| 46 |
+
"tokenization_config": {
|
| 47 |
+
"bos_token_id": 151643,
|
| 48 |
+
"eos_token_id": 151643,
|
| 49 |
+
"mask_token_id": 151660,
|
| 50 |
+
"pad_token_id": 151643,
|
| 51 |
+
"pad_vocab_size_multiple": 1,
|
| 52 |
+
"vocab_size": 151669
|
| 53 |
+
},
|
| 54 |
+
"tokenizer_name": "Qwen/Qwen3-0.6B-Base",
|
| 55 |
+
"torch_dtype": "float32",
|
| 56 |
+
"train_on_context": false,
|
| 57 |
+
"transformers_version": "4.52.4",
|
| 58 |
+
"vocab_size": 151669
|
| 59 |
+
}
|
diffusion.py
ADDED
|
@@ -0,0 +1,1462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
from typing import Any, Dict, Literal, Optional, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm.auto import tqdm
|
| 6 |
+
from transformers import (
|
| 7 |
+
GenerationConfig,
|
| 8 |
+
LogitsProcessorList,
|
| 9 |
+
PreTrainedTokenizer,
|
| 10 |
+
StoppingCriteriaList,
|
| 11 |
+
)
|
| 12 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 13 |
+
|
| 14 |
+
try:
|
| 15 |
+
from torch.nn.attention.flex_attention import (
|
| 16 |
+
BlockMask,
|
| 17 |
+
and_masks,
|
| 18 |
+
create_block_mask,
|
| 19 |
+
)
|
| 20 |
+
except ImportError:
|
| 21 |
+
BlockMask, and_masks, create_block_mask = None, None, None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
from src.denoiser.base import (
|
| 25 |
+
Denoiser,
|
| 26 |
+
DenoiserConfig,
|
| 27 |
+
DenoiserInput,
|
| 28 |
+
LossAndNllOutput,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def create_attn_mask(attn_mask):
|
| 33 |
+
# noinspection PyUnusedLocal
|
| 34 |
+
def padding(b, h, q_idx, kv_idx):
|
| 35 |
+
return attn_mask[b, q_idx] & attn_mask[b, kv_idx]
|
| 36 |
+
|
| 37 |
+
return padding
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class DiffusionGenerationConfig(GenerationConfig):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
num_steps: int = 1000,
|
| 44 |
+
min_t: float = 1e-5,
|
| 45 |
+
block_size: Optional[int] = None,
|
| 46 |
+
first_hitting: bool = False,
|
| 47 |
+
sampling_strategy: Literal["posterior", "predict_then_noise"] = "posterior",
|
| 48 |
+
confidence_based_noising: bool = False,
|
| 49 |
+
confidence_margin_based_noising: bool = False,
|
| 50 |
+
confidence_threshold: float = 1e6,
|
| 51 |
+
use_model_output_cache: bool = True,
|
| 52 |
+
align_inputs_to_blocks: bool = True,
|
| 53 |
+
**kwargs,
|
| 54 |
+
):
|
| 55 |
+
"""Generation config with additional parameters relevant for diffusion model
|
| 56 |
+
sampling.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
num_steps (int): Number of diffusion / iterative refinement steps.
|
| 60 |
+
Defaults to 1000.
|
| 61 |
+
min_t (float): Minimum time to use.
|
| 62 |
+
Diffusion models use t=1 for noise and t=0 for signal.
|
| 63 |
+
Setting t=0 exactly can lead to certain numerical instabilities.
|
| 64 |
+
Defaults to 1e-5.
|
| 65 |
+
block_size (int): Block size to use for semi-autoregressive decoding.
|
| 66 |
+
Defaults to None (in which case block_size is set to max_new_tokens).
|
| 67 |
+
first_hitting (bool): Whether to use first hitting sampler.
|
| 68 |
+
When set to true, rather than following the diffusion time and sampling
|
| 69 |
+
from posterior, which can result in no tokens changing between steps,
|
| 70 |
+
e.g., for masked diffusion, we explicitly determine the next time step
|
| 71 |
+
at which a token will be decoded / generated.
|
| 72 |
+
Note: this will negate the `num_steps` parameter, as we will decode one
|
| 73 |
+
token at a time, hence, when True, num_steps = seq_length
|
| 74 |
+
(or block_size, for semi-autoregressive).
|
| 75 |
+
See https://arxiv.org/abs/2409.02908 for details.
|
| 76 |
+
Defaults to False.
|
| 77 |
+
sampling_strategy (str): Method for transitioning between latents.
|
| 78 |
+
Options:
|
| 79 |
+
- "posterior" - Compute and sample from the posterior
|
| 80 |
+
q(x_s | x_t, x_theta).
|
| 81 |
+
- "predict_then_noise" - Sample from the denoising model x_theta,
|
| 82 |
+
then add back noise to produce x_s.
|
| 83 |
+
Only implemented for absorbing diffusion.
|
| 84 |
+
Defaults to "posterior".
|
| 85 |
+
confidence_based_noising (bool): When using the "predict_then_noise"
|
| 86 |
+
strategy, whether to add noise to random positions or to those that have
|
| 87 |
+
the lowest probability under x_theta.
|
| 88 |
+
Cannot be used in conjunction with confidence_margin_based_noising.
|
| 89 |
+
Defaults to False.
|
| 90 |
+
confidence_margin_based_noising (bool): When using the "predict_then_noise"
|
| 91 |
+
strategy, whether to add noise to random positions or to those that have
|
| 92 |
+
the lowest probability margins under x_theta, where margin is defined as
|
| 93 |
+
the absolute difference between the top two probabilities at a given
|
| 94 |
+
position.
|
| 95 |
+
See https://arxiv.org/abs/2502.06768 for details.
|
| 96 |
+
Cannot be used in conjunction with confidence_based_noising.
|
| 97 |
+
Defaults to False.
|
| 98 |
+
confidence_threshold (float): Confidence threshold to use for sampling.
|
| 99 |
+
Any tokens that exceed threshold are decoded.
|
| 100 |
+
See https://arxiv.org/abs/2505.22618 for details.
|
| 101 |
+
Defaults to 1e6.
|
| 102 |
+
use_model_output_cache (bool): Whether to re-use model's output, if sequence
|
| 103 |
+
is unchanged, because if xt == xs, we can simply re-use the denoising
|
| 104 |
+
model's outputs and save a function evaluation.
|
| 105 |
+
Relevant if model.backbone is not time/noise-conditioned.
|
| 106 |
+
Defaults to True.
|
| 107 |
+
align_inputs_to_blocks (bool): Whether to align input tokens to block size,
|
| 108 |
+
e.g., for an input of length C and block size S, context will be C // S,
|
| 109 |
+
and generation will begin with a block whose first C % S tokens come
|
| 110 |
+
from the input.
|
| 111 |
+
kwargs: Keyword arguments passed to `GenerationConfig`.
|
| 112 |
+
"""
|
| 113 |
+
super().__init__(**kwargs)
|
| 114 |
+
self.num_steps = num_steps
|
| 115 |
+
self.min_t = min_t
|
| 116 |
+
# TODO: assumes we are setting max_new_tokens, which may not be the case!
|
| 117 |
+
self.block_size = block_size if block_size is not None else self.max_new_tokens
|
| 118 |
+
self.first_hitting = first_hitting
|
| 119 |
+
if self.first_hitting:
|
| 120 |
+
# TODO: log.warn that this is being overridden
|
| 121 |
+
self.num_steps = min(num_steps, self.block_size)
|
| 122 |
+
self.sampling_strategy = sampling_strategy
|
| 123 |
+
assert not confidence_based_noising or not confidence_margin_based_noising, (
|
| 124 |
+
"Cannot use both `confidence_based_noising` and"
|
| 125 |
+
" `confidence_margin_based_noising`."
|
| 126 |
+
)
|
| 127 |
+
self.confidence_based_noising = confidence_based_noising
|
| 128 |
+
self.confidence_margin_based_noising = confidence_margin_based_noising
|
| 129 |
+
self.confidence_threshold = confidence_threshold
|
| 130 |
+
self.use_model_output_cache = use_model_output_cache
|
| 131 |
+
self.align_inputs_to_blocks = align_inputs_to_blocks
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class D3PMConfig(DenoiserConfig):
|
| 135 |
+
"""Configuration class for D3PM models."""
|
| 136 |
+
|
| 137 |
+
model_type = "d3pm"
|
| 138 |
+
auto_map = {
|
| 139 |
+
"AutoConfig": "diffusion.D3PMConfig",
|
| 140 |
+
"AutoModel": "diffusion.D3PM",
|
| 141 |
+
"AutoModelForMaskedLM": "diffusion.D3PM",
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
def __init__(
|
| 145 |
+
self,
|
| 146 |
+
keep_clean_bos: Optional[bool] = None, # Whether to enforce un-noised BOS token
|
| 147 |
+
T: int = 1000,
|
| 148 |
+
diffusion_type: Literal["absorbing", "uniform"] = "absorbing",
|
| 149 |
+
**kwargs,
|
| 150 |
+
):
|
| 151 |
+
super().__init__(**kwargs)
|
| 152 |
+
self.keep_clean_bos = keep_clean_bos
|
| 153 |
+
self.diffusion_type = diffusion_type
|
| 154 |
+
self.T = T
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class D3PM(Denoiser):
|
| 158 |
+
"""Denoiser class for D3PM models.
|
| 159 |
+
|
| 160 |
+
This class implements the Denoiser interface for D3PM models.
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
config_class = D3PMConfig
|
| 164 |
+
|
| 165 |
+
def __init__(self, config: D3PMConfig, **kwargs):
|
| 166 |
+
super().__init__(config, **kwargs)
|
| 167 |
+
self.T = config.T
|
| 168 |
+
self.diffusion_type = config.diffusion_type
|
| 169 |
+
self._create_static_mask()
|
| 170 |
+
|
| 171 |
+
def _create_static_mask(self) -> None:
|
| 172 |
+
static_mask = torch.ones(
|
| 173 |
+
self.config.length, self.config.length, dtype=torch.bool
|
| 174 |
+
)
|
| 175 |
+
self.register_buffer(
|
| 176 |
+
"static_attention_mask",
|
| 177 |
+
static_mask,
|
| 178 |
+
)
|
| 179 |
+
self.skip_params_for_push.append("static_attention_mask")
|
| 180 |
+
|
| 181 |
+
def _sample_q_xt(
|
| 182 |
+
self,
|
| 183 |
+
x0: torch.LongTensor,
|
| 184 |
+
alpha_t: torch.FloatTensor,
|
| 185 |
+
context_mask: torch.FloatTensor,
|
| 186 |
+
) -> torch.LongTensor:
|
| 187 |
+
"""Sample from the pre-defined forward / noising process.
|
| 188 |
+
|
| 189 |
+
Parameters:
|
| 190 |
+
x0 (Tensor): Signal / data sample;
|
| 191 |
+
can potentially include context tokens.
|
| 192 |
+
alpha_t (Tensor): Amount of signal to retain.
|
| 193 |
+
context_mask (Tensor): Indicator of context tokens (to remain
|
| 194 |
+
unchanged).
|
| 195 |
+
"""
|
| 196 |
+
move_indices = torch.rand(*x0.shape, device=x0.device) < (1.0 - alpha_t)
|
| 197 |
+
if self.diffusion_type == "absorbing":
|
| 198 |
+
xt = torch.where(
|
| 199 |
+
(move_indices * (1 - context_mask)).bool(), self.mask_token_id, x0
|
| 200 |
+
)
|
| 201 |
+
if self.config.keep_clean_bos:
|
| 202 |
+
xt[..., 0] = x0[..., 0]
|
| 203 |
+
return xt # type: ignore
|
| 204 |
+
if self.diffusion_type == "uniform":
|
| 205 |
+
xt = torch.randint(0, self.vocab_size, x0.shape, device=x0.device)
|
| 206 |
+
xt = torch.where(context_mask.bool(), x0, xt)
|
| 207 |
+
if self.config.keep_clean_bos:
|
| 208 |
+
xt[..., 0] = x0[..., 0]
|
| 209 |
+
return xt # type: ignore
|
| 210 |
+
raise NotImplementedError(
|
| 211 |
+
f"Diffusion type '{self.diffusion_type}' not implemented."
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
def _prepare_inputs(
|
| 215 |
+
self,
|
| 216 |
+
input_ids: torch.LongTensor,
|
| 217 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 218 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 219 |
+
t: Optional[torch.FloatTensor] = None,
|
| 220 |
+
past_key_values: Optional[Cache] = None,
|
| 221 |
+
):
|
| 222 |
+
# Prepare inputs for D3PM model
|
| 223 |
+
if attention_mask is None:
|
| 224 |
+
attention_mask = torch.ones_like(input_ids)
|
| 225 |
+
if context_mask is None:
|
| 226 |
+
context_mask = torch.zeros_like(attention_mask)
|
| 227 |
+
|
| 228 |
+
if torch.is_floating_point(attention_mask):
|
| 229 |
+
attention_mask = attention_mask.to(torch.int)
|
| 230 |
+
context_mask = context_mask.to(torch.int)
|
| 231 |
+
|
| 232 |
+
if t is None:
|
| 233 |
+
t = torch.rand(input_ids.shape[0], device=input_ids.device)
|
| 234 |
+
alpha_t, alpha_t_prime = self.noise_schedule(t)
|
| 235 |
+
while alpha_t.ndim < 2:
|
| 236 |
+
alpha_t = alpha_t[..., None]
|
| 237 |
+
alpha_t_prime = alpha_t_prime[..., None]
|
| 238 |
+
xt = self._sample_q_xt(
|
| 239 |
+
x0=input_ids,
|
| 240 |
+
alpha_t=alpha_t,
|
| 241 |
+
context_mask=context_mask,
|
| 242 |
+
)
|
| 243 |
+
if (
|
| 244 |
+
context_mask is not None
|
| 245 |
+
and context_mask.sum() == 0
|
| 246 |
+
and (attention_mask == 1).all()
|
| 247 |
+
):
|
| 248 |
+
processed_attention_mask = None
|
| 249 |
+
else:
|
| 250 |
+
processed_attention_mask = (
|
| 251 |
+
self.static_attention_mask[None, ...]
|
| 252 |
+
& attention_mask[:, None, :]
|
| 253 |
+
& attention_mask[..., None]
|
| 254 |
+
)[:, None, ...] # Make attention mask 4D
|
| 255 |
+
processed_attention_mask = self._preprocess_attention_mask(
|
| 256 |
+
processed_attention_mask, dtype=torch.float
|
| 257 |
+
)
|
| 258 |
+
if self.training and self.config.train_on_context:
|
| 259 |
+
tokens_mask = attention_mask
|
| 260 |
+
else:
|
| 261 |
+
tokens_mask = attention_mask * (1 - context_mask)
|
| 262 |
+
return DenoiserInput(
|
| 263 |
+
xt=xt,
|
| 264 |
+
x0=input_ids,
|
| 265 |
+
attention_mask=processed_attention_mask,
|
| 266 |
+
context_mask=context_mask,
|
| 267 |
+
tokens_mask=tokens_mask,
|
| 268 |
+
t=t,
|
| 269 |
+
alpha_t=alpha_t,
|
| 270 |
+
alpha_t_prime=alpha_t_prime,
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
def _prepare_inputs_inference(
|
| 274 |
+
self,
|
| 275 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 276 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 277 |
+
context: Optional[torch.LongTensor] = None,
|
| 278 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 279 |
+
cache: Optional[Dict[str, Any]] = None,
|
| 280 |
+
**backbone_kwargs: Any,
|
| 281 |
+
) -> Tuple[DenoiserInput, Dict[str, Any]]:
|
| 282 |
+
assert input_ids is not None or context is not None, (
|
| 283 |
+
"Must provide either input_ids or context."
|
| 284 |
+
)
|
| 285 |
+
cache = cache if cache is not None else {}
|
| 286 |
+
past_key_values = cache.pop("past_key_values", DynamicCache())
|
| 287 |
+
if context is not None:
|
| 288 |
+
if input_ids is not None:
|
| 289 |
+
if context_mask is None:
|
| 290 |
+
context_mask = torch.cat(
|
| 291 |
+
[torch.ones_like(context), torch.zeros_like(input_ids)], dim=-1
|
| 292 |
+
)
|
| 293 |
+
input_ids = torch.cat([context, input_ids], dim=-1)
|
| 294 |
+
else:
|
| 295 |
+
input_ids = context
|
| 296 |
+
context_mask = torch.ones_like(input_ids)
|
| 297 |
+
if attention_mask is None:
|
| 298 |
+
cache_length = self._get_past_key_values_seq_length(past_key_values)
|
| 299 |
+
full_seq_length = cache_length + input_ids.shape[-1]
|
| 300 |
+
attention_mask = torch.ones(
|
| 301 |
+
(input_ids.shape[0], 1, input_ids.shape[1], full_seq_length),
|
| 302 |
+
device=input_ids.device,
|
| 303 |
+
) # Make attention mask 4D
|
| 304 |
+
attention_mask = self._preprocess_attention_mask(
|
| 305 |
+
attention_mask, dtype=torch.float
|
| 306 |
+
)
|
| 307 |
+
return DenoiserInput(
|
| 308 |
+
xt=input_ids,
|
| 309 |
+
attention_mask=attention_mask,
|
| 310 |
+
past_key_values=past_key_values,
|
| 311 |
+
context_mask=context_mask,
|
| 312 |
+
backbone_kwargs=backbone_kwargs | {"use_cache": False},
|
| 313 |
+
), cache
|
| 314 |
+
|
| 315 |
+
def _forward(
|
| 316 |
+
self,
|
| 317 |
+
backbone_output: torch.FloatTensor,
|
| 318 |
+
denoiser_inputs: DenoiserInput,
|
| 319 |
+
**kwargs,
|
| 320 |
+
) -> torch.FloatTensor:
|
| 321 |
+
return torch.log_softmax(backbone_output, dim=-1) # type: ignore
|
| 322 |
+
|
| 323 |
+
def _compute_loss(
|
| 324 |
+
self,
|
| 325 |
+
model_output: torch.FloatTensor,
|
| 326 |
+
denoiser_inputs: DenoiserInput,
|
| 327 |
+
**kwargs: Any,
|
| 328 |
+
) -> LossAndNllOutput:
|
| 329 |
+
raise NotImplementedError
|
| 330 |
+
|
| 331 |
+
def _sample_prior(self, device, batch_size, length):
|
| 332 |
+
"""Samples from prior / limiting distribution."""
|
| 333 |
+
if self.diffusion_type == "absorbing":
|
| 334 |
+
return self.mask_token_id * torch.ones(
|
| 335 |
+
(batch_size, length), dtype=torch.int64, device=device
|
| 336 |
+
)
|
| 337 |
+
if self.diffusion_type == "uniform":
|
| 338 |
+
return torch.randint(
|
| 339 |
+
0,
|
| 340 |
+
self.vocab_size,
|
| 341 |
+
(batch_size, length),
|
| 342 |
+
device=device,
|
| 343 |
+
dtype=torch.int64,
|
| 344 |
+
)
|
| 345 |
+
raise NotImplementedError(
|
| 346 |
+
f"Diffusion type '{self.diffusion_type}' not implemented."
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
def _compute_posterior(
|
| 350 |
+
self,
|
| 351 |
+
x: Union[torch.FloatTensor, torch.LongTensor],
|
| 352 |
+
xt: torch.LongTensor,
|
| 353 |
+
alpha_t: torch.FloatTensor,
|
| 354 |
+
alpha_s: torch.FloatTensor,
|
| 355 |
+
) -> torch.FloatTensor:
|
| 356 |
+
"""Computes posterior / approximate posterior q(x_s | x_t, x),
|
| 357 |
+
where x represents clean sequence (as one-hots) or the output of the
|
| 358 |
+
denoising model.
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
x (Tensor): True (one-hot) / predicted clean signal (B, L, V).
|
| 362 |
+
xt (Tensor): Noised signal at time t (B, L).
|
| 363 |
+
alpha_t (Tensor): Noise schedule parameter at time t (B, 1, 1).
|
| 364 |
+
alpha_s (Tensor): Noise schedule parameter at time s (B, 1, 1).
|
| 365 |
+
"""
|
| 366 |
+
if self.diffusion_type == "absorbing":
|
| 367 |
+
q_xs = x * (alpha_s - alpha_t)
|
| 368 |
+
q_xs[..., self.mask_token_id] = 1 - alpha_s[..., 0]
|
| 369 |
+
q_xs /= 1 - alpha_t
|
| 370 |
+
return q_xs # type: ignore
|
| 371 |
+
|
| 372 |
+
alpha_ts = alpha_t / alpha_s
|
| 373 |
+
d_alpha = alpha_s - alpha_t
|
| 374 |
+
xt_one_hot = torch.nn.functional.one_hot(x, self.vocab_size)
|
| 375 |
+
limiting_distribution = torch.ones_like(xt_one_hot) / self.vocab_size
|
| 376 |
+
if self.diffusion_type == "uniform":
|
| 377 |
+
return (
|
| 378 |
+
alpha_t * self.vocab_size * x * xt_one_hot
|
| 379 |
+
+ (alpha_ts - alpha_t) * xt_one_hot
|
| 380 |
+
+ d_alpha * x
|
| 381 |
+
+ (1 - alpha_ts) * (1 - alpha_s) * limiting_distribution
|
| 382 |
+
) / (
|
| 383 |
+
alpha_t * self.vocab_size * torch.gather(x, -1, xt[..., None])
|
| 384 |
+
+ (1 - alpha_t)
|
| 385 |
+
)
|
| 386 |
+
raise NotImplementedError(
|
| 387 |
+
f"Diffusion type {self.diffusion_type} not implemented."
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
@staticmethod
|
| 391 |
+
def _sample_generation_timesteps(
|
| 392 |
+
generation_config: DiffusionGenerationConfig,
|
| 393 |
+
max_length: Optional[int] = None,
|
| 394 |
+
device: Optional[str] = None,
|
| 395 |
+
) -> torch.FloatTensor:
|
| 396 |
+
"""Sample timesteps for diffusion generation process."""
|
| 397 |
+
if device is None:
|
| 398 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 399 |
+
if max_length is None:
|
| 400 |
+
max_length = generation_config.max_new_tokens
|
| 401 |
+
|
| 402 |
+
if (
|
| 403 |
+
generation_config.first_hitting
|
| 404 |
+
# TODO: first-hitting does not work with posterior
|
| 405 |
+
and generation_config.sampling_strategy == "posterior"
|
| 406 |
+
):
|
| 407 |
+
timesteps = torch.FloatTensor([1.0])
|
| 408 |
+
for i in range(max_length, 0, -1):
|
| 409 |
+
u = torch.rand(1)
|
| 410 |
+
next_t = timesteps[-1] * u ** (1 / i)
|
| 411 |
+
timesteps = torch.cat((timesteps, next_t), dim=0)
|
| 412 |
+
return timesteps[1:].to(device) # type: ignore
|
| 413 |
+
return torch.linspace( # type: ignore
|
| 414 |
+
1.0,
|
| 415 |
+
generation_config.min_t,
|
| 416 |
+
generation_config.num_steps + 1,
|
| 417 |
+
device=device,
|
| 418 |
+
)[:-1]
|
| 419 |
+
|
| 420 |
+
def _generate_unconditional(
|
| 421 |
+
self,
|
| 422 |
+
generation_config: DiffusionGenerationConfig,
|
| 423 |
+
alpha_t: torch.FloatTensor,
|
| 424 |
+
alpha_s: torch.FloatTensor,
|
| 425 |
+
denoiser_inputs: Optional[DenoiserInput] = None,
|
| 426 |
+
model_output_cache: Optional[Dict[str, torch.FloatTensor]] = None,
|
| 427 |
+
cache: Optional[Dict[str, Any]] = None,
|
| 428 |
+
running_generation: Optional[torch.LongTensor] = None,
|
| 429 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 430 |
+
**kwargs: Any,
|
| 431 |
+
) -> Tuple[torch.LongTensor, Dict[str, torch.FloatTensor], Dict[str, Any]]:
|
| 432 |
+
cache = cache if cache is not None else {}
|
| 433 |
+
if model_output_cache is None: # execute function evaluation
|
| 434 |
+
backbone_output = self._backbone_forward(
|
| 435 |
+
denoiser_inputs,
|
| 436 |
+
fix_cache_length=True, # Do not let kv cache grow on each forward call
|
| 437 |
+
**cache,
|
| 438 |
+
**kwargs,
|
| 439 |
+
)
|
| 440 |
+
backbone_output = {k: v for k, v in backbone_output.items()}
|
| 441 |
+
logits = backbone_output.pop("logits")
|
| 442 |
+
cache = cache | backbone_output
|
| 443 |
+
log_x_theta = self._forward(logits, denoiser_inputs, **kwargs)
|
| 444 |
+
if logits_processor is not None:
|
| 445 |
+
for token_idx in range(log_x_theta.shape[1]):
|
| 446 |
+
# TODO: Looping over token positions like this does not allow for
|
| 447 |
+
# some processors, e.g. length penalty which could be applied all
|
| 448 |
+
# at once to the entire block, to be applied in parallel.
|
| 449 |
+
log_x_theta[:, token_idx] = logits_processor(
|
| 450 |
+
input_ids=running_generation,
|
| 451 |
+
scores=log_x_theta[:, token_idx], # type: ignore
|
| 452 |
+
)
|
| 453 |
+
log_x_theta = torch.log_softmax(log_x_theta, dim=-1) # re-normalize
|
| 454 |
+
x_theta = log_x_theta.exp()
|
| 455 |
+
else:
|
| 456 |
+
x_theta = model_output_cache["x_theta"]
|
| 457 |
+
model_output_cache = {"x_theta": x_theta}
|
| 458 |
+
prob_check_denom = denoiser_inputs.xt.numel()
|
| 459 |
+
if generation_config.sampling_strategy == "posterior":
|
| 460 |
+
q_xs = self._compute_posterior(
|
| 461 |
+
x_theta, denoiser_inputs.xt, alpha_t, alpha_s
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
assert abs((q_xs.sum() / prob_check_denom).item() - 1.0) < 1e-6, (
|
| 465 |
+
"Posterior probabilities not summing to 1."
|
| 466 |
+
)
|
| 467 |
+
assert q_xs.isnan().sum().item() == 0, "NaN found in the posterior."
|
| 468 |
+
xs = self._sample_categorical(q_xs, generation_config.do_sample)
|
| 469 |
+
output = torch.where(
|
| 470 |
+
(denoiser_inputs.xt != self.mask_token_id).bool(), # type: ignore
|
| 471 |
+
denoiser_inputs.xt,
|
| 472 |
+
xs,
|
| 473 |
+
)
|
| 474 |
+
elif generation_config.sampling_strategy == "predict_and_noise":
|
| 475 |
+
assert self.config.diffusion_type == "absorbing", (
|
| 476 |
+
"predict_and_noise decoding strategy only supports absorbing diffusion."
|
| 477 |
+
)
|
| 478 |
+
# assert (
|
| 479 |
+
# abs((x_theta.sum() / prob_check_denom).item() - 1.0) < 1e-6
|
| 480 |
+
# ), "Denoising output probabilities not summing to 1."
|
| 481 |
+
# assert x_theta.isnan().sum().item() == 0, (
|
| 482 |
+
# "NaN found in the denoising output."
|
| 483 |
+
# )
|
| 484 |
+
|
| 485 |
+
# Predict
|
| 486 |
+
xs = self._sample_categorical(x_theta, generation_config.do_sample)
|
| 487 |
+
xs_probs = x_theta.gather(-1, xs[..., None]).squeeze(dim=-1)
|
| 488 |
+
output = xs.clone()
|
| 489 |
+
|
| 490 |
+
# Noise
|
| 491 |
+
num_noise_indices = torch.minimum(
|
| 492 |
+
((1 - alpha_s) * generation_config.block_size).to(torch.int),
|
| 493 |
+
(denoiser_inputs.xt == self.mask_token_id).sum() - 1, # type: ignore
|
| 494 |
+
)
|
| 495 |
+
if generation_config.confidence_based_noising:
|
| 496 |
+
conf = x_theta.gather(-1, xs[..., None]).squeeze(-1)
|
| 497 |
+
conf = torch.where( # already decoded tokens have 'inf' confidence
|
| 498 |
+
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
|
| 499 |
+
conf,
|
| 500 |
+
torch.inf,
|
| 501 |
+
)
|
| 502 |
+
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
|
| 503 |
+
elif generation_config.confidence_margin_based_noising:
|
| 504 |
+
top2 = torch.topk(x_theta, k=2, dim=-1).values # shape: (B, L, 2)
|
| 505 |
+
conf = (top2[..., 0] - top2[..., 1]).abs()
|
| 506 |
+
conf = torch.where( # already decoded tokens have 'inf' confidence
|
| 507 |
+
(denoiser_inputs.xt == self.mask_token_id).bool(), # type: ignore
|
| 508 |
+
conf,
|
| 509 |
+
torch.inf,
|
| 510 |
+
)
|
| 511 |
+
noise_indices = conf.argsort(dim=-1)[..., :num_noise_indices]
|
| 512 |
+
else:
|
| 513 |
+
# TODO: implement random noise indices selection
|
| 514 |
+
raise NotImplementedError
|
| 515 |
+
output[..., noise_indices] = self.mask_token_id
|
| 516 |
+
output = torch.where(
|
| 517 |
+
xs_probs >= generation_config.confidence_threshold, xs, output
|
| 518 |
+
)
|
| 519 |
+
else:
|
| 520 |
+
raise NotImplementedError(
|
| 521 |
+
f"Sampling strategy {generation_config.sampling_strategy} not"
|
| 522 |
+
" implemented."
|
| 523 |
+
)
|
| 524 |
+
return output, model_output_cache, cache # type: ignore
|
| 525 |
+
|
| 526 |
+
@torch.no_grad()
|
| 527 |
+
def generate(
|
| 528 |
+
self,
|
| 529 |
+
inputs: Optional[torch.LongTensor] = None,
|
| 530 |
+
generation_config: Optional[DiffusionGenerationConfig] = None,
|
| 531 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 532 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 533 |
+
max_length: Optional[int] = None,
|
| 534 |
+
max_new_tokens: Optional[int] = None,
|
| 535 |
+
batch_size: Optional[int] = None,
|
| 536 |
+
device: Optional[str] = None,
|
| 537 |
+
tokenizer: Optional[PreTrainedTokenizer] = None,
|
| 538 |
+
disable_pbar: bool = False,
|
| 539 |
+
**kwargs: Any,
|
| 540 |
+
) -> torch.LongTensor:
|
| 541 |
+
# Setup sampling variables
|
| 542 |
+
if generation_config is None:
|
| 543 |
+
assert getattr(self, "generation_config", None) is not None, (
|
| 544 |
+
"Generation config must be provided if not present in the model."
|
| 545 |
+
)
|
| 546 |
+
generation_config = self.generation_config
|
| 547 |
+
if inputs is None:
|
| 548 |
+
inputs = torch.ones((batch_size, 1), device=device) * self.bos_token_id
|
| 549 |
+
if max_length is None:
|
| 550 |
+
if hasattr(generation_config, "max_length"):
|
| 551 |
+
max_length = generation_config.max_length
|
| 552 |
+
else:
|
| 553 |
+
max_length = self.max_length
|
| 554 |
+
if max_new_tokens is None:
|
| 555 |
+
if hasattr(generation_config, "max_new_tokens"):
|
| 556 |
+
max_new_tokens = generation_config.max_new_tokens
|
| 557 |
+
else:
|
| 558 |
+
max_new_tokens = max_length - inputs.shape[-1]
|
| 559 |
+
batch_size = batch_size if batch_size is not None else inputs.shape[0]
|
| 560 |
+
assert batch_size == 1, "Batched sampling not supported yet"
|
| 561 |
+
if device is None:
|
| 562 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 563 |
+
block_size = generation_config.block_size
|
| 564 |
+
max_blocks = max_new_tokens // block_size
|
| 565 |
+
|
| 566 |
+
# Sample max generation length tensor from prior
|
| 567 |
+
accumulated_samples = self._sample_prior(
|
| 568 |
+
device=device,
|
| 569 |
+
batch_size=batch_size,
|
| 570 |
+
length=max_blocks * block_size,
|
| 571 |
+
)
|
| 572 |
+
accumulated_samples = torch.cat([inputs, accumulated_samples], dim=-1)
|
| 573 |
+
if generation_config.use_cache and inputs.numel() > 0:
|
| 574 |
+
cache = self.update_cache(
|
| 575 |
+
inputs=inputs[:, : block_size * (inputs.shape[-1] // block_size)]
|
| 576 |
+
if generation_config.align_inputs_to_blocks
|
| 577 |
+
else inputs,
|
| 578 |
+
cache={},
|
| 579 |
+
)
|
| 580 |
+
else:
|
| 581 |
+
cache = None
|
| 582 |
+
|
| 583 |
+
if generation_config.align_inputs_to_blocks:
|
| 584 |
+
inputs_offset = (
|
| 585 |
+
block_size * (inputs.shape[-1] // block_size)
|
| 586 |
+
if inputs.numel() > 0
|
| 587 |
+
else 0
|
| 588 |
+
)
|
| 589 |
+
else:
|
| 590 |
+
inputs_offset = inputs.shape[-1] if inputs.numel() > 0 else 0
|
| 591 |
+
|
| 592 |
+
total_NFEs = 0
|
| 593 |
+
timesteps = self._sample_generation_timesteps( # Re-use in every block
|
| 594 |
+
generation_config, max_length=block_size, device=device
|
| 595 |
+
)
|
| 596 |
+
dt = (1 - generation_config.min_t) / len(timesteps)
|
| 597 |
+
block_pbar = tqdm(
|
| 598 |
+
range(max_blocks),
|
| 599 |
+
desc="Blocks",
|
| 600 |
+
leave=True,
|
| 601 |
+
disable=disable_pbar,
|
| 602 |
+
)
|
| 603 |
+
for block_id in block_pbar:
|
| 604 |
+
block_NFEs = 0
|
| 605 |
+
xt = accumulated_samples[
|
| 606 |
+
:,
|
| 607 |
+
inputs_offset + (block_id * block_size) : inputs_offset
|
| 608 |
+
+ ((block_id + 1) * block_size),
|
| 609 |
+
]
|
| 610 |
+
if self.mask_token_id not in xt:
|
| 611 |
+
continue
|
| 612 |
+
step_pbar = tqdm(
|
| 613 |
+
timesteps,
|
| 614 |
+
desc="T",
|
| 615 |
+
total=timesteps.shape[0],
|
| 616 |
+
leave=False,
|
| 617 |
+
disable=disable_pbar,
|
| 618 |
+
)
|
| 619 |
+
model_output_cache = None
|
| 620 |
+
context = (
|
| 621 |
+
accumulated_samples[:, : (block_id * block_size) + inputs_offset]
|
| 622 |
+
if not generation_config.use_cache
|
| 623 |
+
else None
|
| 624 |
+
)
|
| 625 |
+
# Used for logit processing
|
| 626 |
+
running_generation = accumulated_samples[
|
| 627 |
+
:,
|
| 628 |
+
inputs_offset : inputs_offset + (block_id * block_size),
|
| 629 |
+
]
|
| 630 |
+
for t in step_pbar:
|
| 631 |
+
if model_output_cache is None:
|
| 632 |
+
block_NFEs += 1
|
| 633 |
+
total_NFEs += 1
|
| 634 |
+
# t is 0-dim tensor, reshape to (1, 1, 1) for broadcasting
|
| 635 |
+
alpha_t, _ = self.noise_schedule(t)
|
| 636 |
+
alpha_s, _ = self.noise_schedule(t - dt)
|
| 637 |
+
alpha_t = alpha_t[None, None, None]
|
| 638 |
+
alpha_s = alpha_s[None, None, None]
|
| 639 |
+
denoiser_inputs, cache = self._prepare_inputs_inference(
|
| 640 |
+
input_ids=xt,
|
| 641 |
+
context=context,
|
| 642 |
+
cache=cache if generation_config.use_cache else None,
|
| 643 |
+
)
|
| 644 |
+
xs, model_output_cache, cache = self._generate_unconditional(
|
| 645 |
+
generation_config=generation_config,
|
| 646 |
+
alpha_t=alpha_t,
|
| 647 |
+
alpha_s=alpha_s,
|
| 648 |
+
denoiser_inputs=denoiser_inputs,
|
| 649 |
+
model_output_cache=model_output_cache,
|
| 650 |
+
cache=cache,
|
| 651 |
+
running_generation=running_generation, # type: ignore
|
| 652 |
+
logits_processor=logits_processor,
|
| 653 |
+
tokenizer=tokenizer,
|
| 654 |
+
**kwargs,
|
| 655 |
+
)
|
| 656 |
+
block_pbar.set_postfix(
|
| 657 |
+
NFEs=total_NFEs,
|
| 658 |
+
block_NFEs=block_NFEs,
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
if (
|
| 662 |
+
not torch.allclose(xs, denoiser_inputs.xt)
|
| 663 |
+
or not generation_config.use_model_output_cache
|
| 664 |
+
):
|
| 665 |
+
model_output_cache = None
|
| 666 |
+
if not generation_config.use_cache:
|
| 667 |
+
xt[..., -block_size:] = xs[..., -block_size:]
|
| 668 |
+
else:
|
| 669 |
+
xt = xs
|
| 670 |
+
if (
|
| 671 |
+
xt == self.mask_token_id
|
| 672 |
+
).sum().item() == 0 and self.config.diffusion_type == "absorbing":
|
| 673 |
+
break
|
| 674 |
+
accumulated_samples[
|
| 675 |
+
:,
|
| 676 |
+
inputs_offset + (block_id * block_size) : inputs_offset
|
| 677 |
+
+ ((block_id + 1) * block_size),
|
| 678 |
+
] = xt
|
| 679 |
+
if tokenizer is not None: # Useful for debugging
|
| 680 |
+
print(tokenizer.batch_decode(accumulated_samples))
|
| 681 |
+
if stopping_criteria is not None:
|
| 682 |
+
is_done = stopping_criteria(
|
| 683 |
+
input_ids=accumulated_samples[ # type: ignore
|
| 684 |
+
:,
|
| 685 |
+
inputs_offset : inputs_offset + ((block_id + 1) * block_size),
|
| 686 |
+
],
|
| 687 |
+
scores=None, # type: ignore
|
| 688 |
+
)
|
| 689 |
+
if torch.any(is_done):
|
| 690 |
+
accumulated_samples = accumulated_samples[
|
| 691 |
+
:,
|
| 692 |
+
: inputs_offset + ((block_id + 1) * block_size),
|
| 693 |
+
]
|
| 694 |
+
break
|
| 695 |
+
if generation_config.use_cache:
|
| 696 |
+
cache = self.update_cache(
|
| 697 |
+
inputs=xt,
|
| 698 |
+
cache=cache,
|
| 699 |
+
)
|
| 700 |
+
return accumulated_samples # type: ignore
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
class MDLMConfig(D3PMConfig):
|
| 704 |
+
"""Configuration class for MDLM models."""
|
| 705 |
+
|
| 706 |
+
model_type = "mdlm"
|
| 707 |
+
auto_map = {
|
| 708 |
+
"AutoConfig": "diffusion.MDLMConfig",
|
| 709 |
+
"AutoModel": "diffusion.MDLM",
|
| 710 |
+
"AutoModelForMaskedLM": "diffusion.MDLM",
|
| 711 |
+
}
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
class MDLM(D3PM):
|
| 715 |
+
"""Denoiser class for MDLM models."""
|
| 716 |
+
|
| 717 |
+
config_class = MDLMConfig
|
| 718 |
+
|
| 719 |
+
def __init__(self, config: MDLMConfig, **kwargs):
|
| 720 |
+
super().__init__(config, **kwargs)
|
| 721 |
+
self.neg_infinity = -1e12
|
| 722 |
+
|
| 723 |
+
def _forward(
|
| 724 |
+
self,
|
| 725 |
+
backbone_output: torch.FloatTensor,
|
| 726 |
+
denoiser_inputs: DenoiserInput,
|
| 727 |
+
**kwargs,
|
| 728 |
+
) -> torch.FloatTensor:
|
| 729 |
+
# Zero-mask probability
|
| 730 |
+
backbone_output[..., self.mask_token_id] = self.neg_infinity
|
| 731 |
+
log_probs = backbone_output - torch.logsumexp(
|
| 732 |
+
backbone_output, dim=-1, keepdim=True
|
| 733 |
+
)
|
| 734 |
+
# Copy-over unmasked: For the log_probs of the unmasked tokens, set all values
|
| 735 |
+
# to -infinity except for the indices corresponding to
|
| 736 |
+
# the unmasked tokens.
|
| 737 |
+
xt = denoiser_inputs.xt
|
| 738 |
+
unmasked_indices = xt != self.mask_token_id
|
| 739 |
+
log_probs[unmasked_indices] = self.neg_infinity
|
| 740 |
+
log_probs[unmasked_indices, xt[unmasked_indices]] = 0
|
| 741 |
+
return log_probs # type: ignore
|
| 742 |
+
|
| 743 |
+
def _compute_loss(
|
| 744 |
+
self,
|
| 745 |
+
model_output: torch.FloatTensor,
|
| 746 |
+
denoiser_inputs: DenoiserInput,
|
| 747 |
+
**kwargs: Any,
|
| 748 |
+
) -> LossAndNllOutput:
|
| 749 |
+
log_p_theta = torch.gather(
|
| 750 |
+
input=model_output, dim=-1, index=denoiser_inputs.x0[:, :, None]
|
| 751 |
+
).squeeze(-1)
|
| 752 |
+
nlls = (
|
| 753 |
+
log_p_theta
|
| 754 |
+
* denoiser_inputs.alpha_t_prime
|
| 755 |
+
/ (1 - denoiser_inputs.alpha_t)
|
| 756 |
+
* denoiser_inputs.tokens_mask
|
| 757 |
+
)
|
| 758 |
+
if self.training:
|
| 759 |
+
batch_nll = -(log_p_theta * denoiser_inputs.tokens_mask).sum(dim=-1)
|
| 760 |
+
else:
|
| 761 |
+
batch_nll = nlls.sum(dim=-1)
|
| 762 |
+
count = denoiser_inputs.tokens_mask.sum(dim=-1)
|
| 763 |
+
token_nll = (batch_nll / count).mean()
|
| 764 |
+
return LossAndNllOutput(
|
| 765 |
+
loss=token_nll, # type: ignore
|
| 766 |
+
nlls=nlls,
|
| 767 |
+
other_loss_terms={
|
| 768 |
+
"masked_tokens": (denoiser_inputs.xt == self.mask_token_id).int()
|
| 769 |
+
},
|
| 770 |
+
)
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
class BD3LMConfig(MDLMConfig):
|
| 774 |
+
"""Configuration class for BD3LM models."""
|
| 775 |
+
|
| 776 |
+
model_type = "bd3lm"
|
| 777 |
+
auto_map = {
|
| 778 |
+
"AutoConfig": "diffusion.BD3LMConfig",
|
| 779 |
+
"AutoModel": "diffusion.BD3LM",
|
| 780 |
+
"AutoModelForMaskedLM": "diffusion.BD3LM",
|
| 781 |
+
}
|
| 782 |
+
|
| 783 |
+
def __init__(
|
| 784 |
+
self,
|
| 785 |
+
block_size: Optional[int] = None,
|
| 786 |
+
eval_block_size: Optional[int] = None,
|
| 787 |
+
**kwargs,
|
| 788 |
+
):
|
| 789 |
+
super().__init__(**kwargs)
|
| 790 |
+
self.block_size = block_size
|
| 791 |
+
self.eval_block_size = (
|
| 792 |
+
eval_block_size if eval_block_size is not None else block_size
|
| 793 |
+
)
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
class BD3LM(MDLM):
|
| 797 |
+
"""Denoiser class for BD3LM models."""
|
| 798 |
+
|
| 799 |
+
config_class = BD3LMConfig
|
| 800 |
+
|
| 801 |
+
def __init__(self, config: BD3LMConfig, **kwargs):
|
| 802 |
+
super().__init__(config, **kwargs)
|
| 803 |
+
|
| 804 |
+
# noinspection PyUnusedLocal
|
| 805 |
+
@staticmethod
|
| 806 |
+
def _block_mask(
|
| 807 |
+
b,
|
| 808 |
+
h,
|
| 809 |
+
q_idx,
|
| 810 |
+
kv_idx,
|
| 811 |
+
block_size: Optional[int] = None,
|
| 812 |
+
seq_length: Optional[int] = None,
|
| 813 |
+
) -> torch.Tensor:
|
| 814 |
+
del b, h
|
| 815 |
+
|
| 816 |
+
# Indicate whether token belongs to xt or x0:
|
| 817 |
+
xt_flag_q = (q_idx >= seq_length).bool()
|
| 818 |
+
xt_flag_kv = (kv_idx >= seq_length).bool()
|
| 819 |
+
|
| 820 |
+
# Compute block indices
|
| 821 |
+
block_q = torch.where(
|
| 822 |
+
xt_flag_q, (q_idx - seq_length) // block_size, q_idx // block_size
|
| 823 |
+
)
|
| 824 |
+
block_kv = torch.where(
|
| 825 |
+
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
|
| 826 |
+
)
|
| 827 |
+
# **1. Offset Block-Causal Mask (M_OBC) **
|
| 828 |
+
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv & xt_flag_q
|
| 829 |
+
|
| 830 |
+
# **2. Block Diagonal Mask (M_BD) **
|
| 831 |
+
block_diagonal = (block_q == block_kv) & (xt_flag_q == xt_flag_kv)
|
| 832 |
+
|
| 833 |
+
# **3. Block-Causal Mask (M_BC) **
|
| 834 |
+
block_causal = (block_q >= block_kv) & ~xt_flag_kv & ~xt_flag_q
|
| 835 |
+
|
| 836 |
+
# **3. Combine Masks **
|
| 837 |
+
return block_diagonal | offset_block_causal | block_causal
|
| 838 |
+
|
| 839 |
+
def _create_static_mask(self) -> None:
|
| 840 |
+
if self.config.attn_backend == "sdpa":
|
| 841 |
+
static_mask = self._block_mask(
|
| 842 |
+
b=None,
|
| 843 |
+
h=None,
|
| 844 |
+
q_idx=torch.arange(self.config.length * 2)[:, None],
|
| 845 |
+
kv_idx=torch.arange(self.config.length * 2)[None, :],
|
| 846 |
+
block_size=self.config.block_size
|
| 847 |
+
if self.training
|
| 848 |
+
else self.config.eval_block_size,
|
| 849 |
+
seq_length=self.config.length,
|
| 850 |
+
)
|
| 851 |
+
self.register_buffer(
|
| 852 |
+
"static_attention_mask",
|
| 853 |
+
static_mask,
|
| 854 |
+
)
|
| 855 |
+
self.skip_params_for_push.append("static_attention_mask")
|
| 856 |
+
elif self.config.attn_backend == "flex_attention":
|
| 857 |
+
mask = partial(
|
| 858 |
+
self._block_mask,
|
| 859 |
+
block_size=self.config.block_size
|
| 860 |
+
if self.training
|
| 861 |
+
else self.config.eval_block_size,
|
| 862 |
+
seq_length=self.config.length,
|
| 863 |
+
)
|
| 864 |
+
self.static_attention_mask = create_block_mask(
|
| 865 |
+
mask,
|
| 866 |
+
B=None,
|
| 867 |
+
H=None,
|
| 868 |
+
Q_LEN=self.config.length * 2,
|
| 869 |
+
KV_LEN=self.config.length * 2,
|
| 870 |
+
)
|
| 871 |
+
|
| 872 |
+
def _ensure_no_unmasked_blocks(
|
| 873 |
+
self,
|
| 874 |
+
input_ids: torch.LongTensor,
|
| 875 |
+
xt: torch.LongTensor,
|
| 876 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 877 |
+
) -> torch.Tensor:
|
| 878 |
+
n_blocks = xt.shape[1] // self.config.block_size
|
| 879 |
+
# If context overlaps w/block, ignore it
|
| 880 |
+
blocks_without_masks = ((xt == self.mask_token_id) + context_mask).reshape(
|
| 881 |
+
-1, n_blocks, self.config.block_size
|
| 882 |
+
).sum(dim=-1) == 0
|
| 883 |
+
if blocks_without_masks.sum() > 0:
|
| 884 |
+
num_remasks_per_block = torch.randint(
|
| 885 |
+
0,
|
| 886 |
+
self.config.block_size,
|
| 887 |
+
blocks_without_masks.shape,
|
| 888 |
+
device=xt.device,
|
| 889 |
+
)
|
| 890 |
+
rand = torch.rand(xt.shape[0], xt.shape[1], device=xt.device)
|
| 891 |
+
perm_indices = torch.argsort(
|
| 892 |
+
rand.view(xt.shape[0], n_blocks, self.config.block_size),
|
| 893 |
+
stable=True,
|
| 894 |
+
dim=-1,
|
| 895 |
+
)
|
| 896 |
+
remask_indices = perm_indices <= num_remasks_per_block[..., None]
|
| 897 |
+
xt = torch.where(
|
| 898 |
+
remask_indices.view(xt.shape[0], xt.shape[1])
|
| 899 |
+
* blocks_without_masks.repeat_interleave(self.config.block_size, dim=1),
|
| 900 |
+
self.mask_token_id,
|
| 901 |
+
xt,
|
| 902 |
+
)
|
| 903 |
+
if self.config.keep_clean_bos:
|
| 904 |
+
xt[..., 0] = input_ids[..., 0]
|
| 905 |
+
return xt
|
| 906 |
+
|
| 907 |
+
def _prepare_inputs(
|
| 908 |
+
self,
|
| 909 |
+
input_ids: torch.LongTensor,
|
| 910 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 911 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 912 |
+
t: Optional[torch.FloatTensor] = None,
|
| 913 |
+
past_key_values: Optional[Cache] = None,
|
| 914 |
+
):
|
| 915 |
+
if attention_mask is None:
|
| 916 |
+
attention_mask = torch.ones_like(input_ids)
|
| 917 |
+
if context_mask is None:
|
| 918 |
+
context_mask = torch.zeros_like(attention_mask)
|
| 919 |
+
|
| 920 |
+
if torch.is_floating_point(attention_mask):
|
| 921 |
+
attention_mask = attention_mask.to(torch.int)
|
| 922 |
+
context_mask = context_mask.to(torch.int)
|
| 923 |
+
|
| 924 |
+
if t is None:
|
| 925 |
+
t = torch.rand(
|
| 926 |
+
input_ids.shape[0],
|
| 927 |
+
input_ids.shape[1] // self.config.block_size
|
| 928 |
+
if self.training
|
| 929 |
+
else self.config.eval_block_size,
|
| 930 |
+
device=input_ids.device,
|
| 931 |
+
).repeat_interleave(
|
| 932 |
+
self.config.block_size
|
| 933 |
+
if self.training
|
| 934 |
+
else self.config.eval_block_size,
|
| 935 |
+
dim=-1,
|
| 936 |
+
)
|
| 937 |
+
alpha_t, alpha_t_prime = self.noise_schedule(t)
|
| 938 |
+
while alpha_t.ndim < 2:
|
| 939 |
+
alpha_t = alpha_t[..., None]
|
| 940 |
+
alpha_t_prime = alpha_t_prime[..., None]
|
| 941 |
+
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
|
| 942 |
+
# Ensure each block has at least 1 masked token
|
| 943 |
+
if self.training:
|
| 944 |
+
xt = self._ensure_no_unmasked_blocks(
|
| 945 |
+
input_ids,
|
| 946 |
+
xt,
|
| 947 |
+
context_mask,
|
| 948 |
+
)
|
| 949 |
+
if self.config.attn_backend == "sdpa":
|
| 950 |
+
decoder_attention_mask = (
|
| 951 |
+
self.static_attention_mask[None, ...]
|
| 952 |
+
& attention_mask.repeat(1, 2)[:, None, :]
|
| 953 |
+
& attention_mask.repeat(1, 2)[..., None]
|
| 954 |
+
)[:, None, ...] # Make attention mask 4D
|
| 955 |
+
decoder_attention_mask = self._preprocess_attention_mask(
|
| 956 |
+
decoder_attention_mask, dtype=torch.float
|
| 957 |
+
)
|
| 958 |
+
elif self.config.attn_backend == "flex_attention":
|
| 959 |
+
if context_mask.any():
|
| 960 |
+
raise NotImplementedError(
|
| 961 |
+
"flex_attention with context_mask not implemented yet."
|
| 962 |
+
)
|
| 963 |
+
elif attention_mask is not None and (attention_mask != 1).any():
|
| 964 |
+
padding_mask = create_attn_mask(
|
| 965 |
+
attention_mask.bool().repeat(2, 2).bool()
|
| 966 |
+
)
|
| 967 |
+
dec_masks = [
|
| 968 |
+
partial(
|
| 969 |
+
self._block_mask,
|
| 970 |
+
block_size=self.config.block_size
|
| 971 |
+
if self.training
|
| 972 |
+
else self.config.eval_block_size,
|
| 973 |
+
seq_length=self.config.length,
|
| 974 |
+
),
|
| 975 |
+
padding_mask,
|
| 976 |
+
]
|
| 977 |
+
decoder_attention_mask = create_block_mask(
|
| 978 |
+
and_masks(*dec_masks),
|
| 979 |
+
B=input_ids.shape[0],
|
| 980 |
+
H=None,
|
| 981 |
+
Q_LEN=input_ids.shape[1] * 2,
|
| 982 |
+
KV_LEN=input_ids.shape[1] * 2,
|
| 983 |
+
)
|
| 984 |
+
else:
|
| 985 |
+
decoder_attention_mask = self.static_attention_mask
|
| 986 |
+
else:
|
| 987 |
+
raise ValueError("Unknown backbone backend")
|
| 988 |
+
backbone_input_ids = torch.cat((input_ids, xt), dim=-1)
|
| 989 |
+
position_ids = (
|
| 990 |
+
torch.arange(input_ids.shape[1]).repeat(2).to(input_ids.device)[None, :]
|
| 991 |
+
)
|
| 992 |
+
if self.training and self.config.train_on_context:
|
| 993 |
+
tokens_mask = attention_mask
|
| 994 |
+
else:
|
| 995 |
+
tokens_mask = attention_mask * (1 - context_mask)
|
| 996 |
+
return DenoiserInput(
|
| 997 |
+
xt=backbone_input_ids, # type: ignore
|
| 998 |
+
x0=input_ids,
|
| 999 |
+
attention_mask=decoder_attention_mask, # type: ignore
|
| 1000 |
+
tokens_mask=tokens_mask,
|
| 1001 |
+
t=t,
|
| 1002 |
+
alpha_t=alpha_t,
|
| 1003 |
+
alpha_t_prime=alpha_t_prime,
|
| 1004 |
+
backbone_kwargs={
|
| 1005 |
+
"cache_position": position_ids[0],
|
| 1006 |
+
"position_ids": position_ids,
|
| 1007 |
+
},
|
| 1008 |
+
)
|
| 1009 |
+
|
| 1010 |
+
def _prepare_inputs_inference(
|
| 1011 |
+
self,
|
| 1012 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1013 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1014 |
+
context: Optional[torch.LongTensor] = None,
|
| 1015 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 1016 |
+
cache: Optional[Dict[str, Any]] = None,
|
| 1017 |
+
return_updated_cache: bool = False,
|
| 1018 |
+
**backbone_kwargs: Dict[str, Any],
|
| 1019 |
+
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
|
| 1020 |
+
device = input_ids.device if input_ids is not None else context.device
|
| 1021 |
+
assert input_ids is not None or context is not None, (
|
| 1022 |
+
"Must provide either input_ids or context."
|
| 1023 |
+
)
|
| 1024 |
+
cache = cache if cache is not None else {}
|
| 1025 |
+
past_key_values = cache.pop("past_key_values", DynamicCache())
|
| 1026 |
+
if context is not None:
|
| 1027 |
+
if input_ids is not None:
|
| 1028 |
+
input_ids = torch.cat([context, input_ids], dim=-1)
|
| 1029 |
+
else:
|
| 1030 |
+
input_ids = context
|
| 1031 |
+
cache_length = self._get_past_key_values_seq_length(past_key_values)
|
| 1032 |
+
full_seq_length = cache_length + input_ids.shape[-1]
|
| 1033 |
+
decoder_attention_mask = self.static_attention_mask[
|
| 1034 |
+
None,
|
| 1035 |
+
None,
|
| 1036 |
+
cache_length:full_seq_length,
|
| 1037 |
+
:full_seq_length,
|
| 1038 |
+
] # Make attention mask 4D
|
| 1039 |
+
decoder_attention_mask = self._preprocess_attention_mask(
|
| 1040 |
+
decoder_attention_mask, dtype=torch.float
|
| 1041 |
+
)
|
| 1042 |
+
position_ids = torch.arange(cache_length, full_seq_length).to(device)[None, :]
|
| 1043 |
+
return DenoiserInput(
|
| 1044 |
+
xt=input_ids,
|
| 1045 |
+
attention_mask=decoder_attention_mask,
|
| 1046 |
+
context_mask=context_mask,
|
| 1047 |
+
past_key_values=past_key_values,
|
| 1048 |
+
backbone_kwargs={
|
| 1049 |
+
"position_ids": position_ids,
|
| 1050 |
+
}
|
| 1051 |
+
| backbone_kwargs,
|
| 1052 |
+
), cache
|
| 1053 |
+
|
| 1054 |
+
def _compute_loss(
|
| 1055 |
+
self,
|
| 1056 |
+
model_output: torch.FloatTensor,
|
| 1057 |
+
denoiser_inputs: DenoiserInput,
|
| 1058 |
+
**kwargs: Any,
|
| 1059 |
+
) -> LossAndNllOutput:
|
| 1060 |
+
input_length = denoiser_inputs.xt.shape[1] // 2
|
| 1061 |
+
model_output = model_output[:, input_length:, ...]
|
| 1062 |
+
return super()._compute_loss(
|
| 1063 |
+
model_output=model_output, # type: ignore
|
| 1064 |
+
denoiser_inputs=denoiser_inputs,
|
| 1065 |
+
**kwargs,
|
| 1066 |
+
)
|
| 1067 |
+
|
| 1068 |
+
|
| 1069 |
+
class E2D2Config(BD3LMConfig):
|
| 1070 |
+
"""Configuration class for E2D2 models."""
|
| 1071 |
+
|
| 1072 |
+
model_type = "e2d2"
|
| 1073 |
+
auto_map = {
|
| 1074 |
+
"AutoConfig": "diffusion.E2D2Config",
|
| 1075 |
+
"AutoModel": "diffusion.E2D2",
|
| 1076 |
+
"AutoModelForMaskedLM": "diffusion.E2D2",
|
| 1077 |
+
}
|
| 1078 |
+
|
| 1079 |
+
def __init__(
|
| 1080 |
+
self,
|
| 1081 |
+
**kwargs,
|
| 1082 |
+
):
|
| 1083 |
+
super().__init__(**kwargs)
|
| 1084 |
+
|
| 1085 |
+
|
| 1086 |
+
class E2D2(BD3LM):
|
| 1087 |
+
"""Denoiser class for E2D2 models."""
|
| 1088 |
+
|
| 1089 |
+
config_class = E2D2Config
|
| 1090 |
+
|
| 1091 |
+
def __init__(self, config: E2D2Config, **kwargs):
|
| 1092 |
+
super().__init__(config, **kwargs)
|
| 1093 |
+
|
| 1094 |
+
# noinspection PyUnusedLocal
|
| 1095 |
+
@staticmethod
|
| 1096 |
+
def _encoder_block_mask(
|
| 1097 |
+
b,
|
| 1098 |
+
h,
|
| 1099 |
+
q_idx,
|
| 1100 |
+
kv_idx,
|
| 1101 |
+
block_size: Optional[int] = None,
|
| 1102 |
+
) -> torch.Tensor:
|
| 1103 |
+
"""
|
| 1104 |
+
Args:
|
| 1105 |
+
q_idx (Tensor): Query indices.
|
| 1106 |
+
kv_idx (Tensor): Key indices
|
| 1107 |
+
b (Optional: int): batch size
|
| 1108 |
+
h (Optional: int): number of heads
|
| 1109 |
+
block_size (Optional: int): Defines the block structure.
|
| 1110 |
+
|
| 1111 |
+
Returns:
|
| 1112 |
+
Encoder block-causal attention mask.
|
| 1113 |
+
"""
|
| 1114 |
+
|
| 1115 |
+
# Compute block indices
|
| 1116 |
+
block_q = q_idx // block_size
|
| 1117 |
+
block_kv = kv_idx // block_size
|
| 1118 |
+
|
| 1119 |
+
# ** Block-Causal Mask **
|
| 1120 |
+
return block_q >= block_kv
|
| 1121 |
+
|
| 1122 |
+
# noinspection PyUnusedLocal
|
| 1123 |
+
@staticmethod
|
| 1124 |
+
def _decoder_block_mask(
|
| 1125 |
+
b,
|
| 1126 |
+
h,
|
| 1127 |
+
q_idx,
|
| 1128 |
+
kv_idx,
|
| 1129 |
+
block_size: Optional[int] = None,
|
| 1130 |
+
seq_length: Optional[int] = None,
|
| 1131 |
+
) -> torch.Tensor:
|
| 1132 |
+
# Indicate whether token belongs to xt or x0:
|
| 1133 |
+
xt_flag_kv = (kv_idx >= seq_length).bool()
|
| 1134 |
+
|
| 1135 |
+
# Compute block indices
|
| 1136 |
+
block_q = q_idx // block_size
|
| 1137 |
+
block_kv = torch.where(
|
| 1138 |
+
xt_flag_kv, (kv_idx - seq_length) // block_size, kv_idx // block_size
|
| 1139 |
+
)
|
| 1140 |
+
# **1. Offset Block-Causal Mask (M_OBC) **
|
| 1141 |
+
offset_block_causal = (block_q > block_kv) & ~xt_flag_kv
|
| 1142 |
+
|
| 1143 |
+
# **2. Block Diagonal Mask (M_BD) **
|
| 1144 |
+
block_diagonal = (block_q == block_kv) & xt_flag_kv
|
| 1145 |
+
|
| 1146 |
+
# **3. Combine Masks **
|
| 1147 |
+
return block_diagonal | offset_block_causal
|
| 1148 |
+
|
| 1149 |
+
def _create_static_mask(self) -> None:
|
| 1150 |
+
if self.config.attn_backend == "flex_attention":
|
| 1151 |
+
enc_mask = partial(
|
| 1152 |
+
self._encoder_block_mask,
|
| 1153 |
+
block_size=self.config.block_size
|
| 1154 |
+
if self.training
|
| 1155 |
+
else self.config.eval_block_size,
|
| 1156 |
+
)
|
| 1157 |
+
encoder_attention_mask = create_block_mask(
|
| 1158 |
+
enc_mask,
|
| 1159 |
+
B=None,
|
| 1160 |
+
H=None,
|
| 1161 |
+
Q_LEN=self.config.length,
|
| 1162 |
+
KV_LEN=self.config.length,
|
| 1163 |
+
)
|
| 1164 |
+
dec_mask = partial(
|
| 1165 |
+
self._decoder_block_mask,
|
| 1166 |
+
block_size=self.config.block_size
|
| 1167 |
+
if self.training
|
| 1168 |
+
else self.config.eval_block_size,
|
| 1169 |
+
seq_length=self.config.length,
|
| 1170 |
+
)
|
| 1171 |
+
decoder_attention_mask = create_block_mask(
|
| 1172 |
+
dec_mask,
|
| 1173 |
+
B=None,
|
| 1174 |
+
H=None,
|
| 1175 |
+
Q_LEN=self.config.length,
|
| 1176 |
+
KV_LEN=self.config.length * 2,
|
| 1177 |
+
)
|
| 1178 |
+
self.encoder_static_attention_mask = encoder_attention_mask
|
| 1179 |
+
self.static_attention_mask = decoder_attention_mask
|
| 1180 |
+
else:
|
| 1181 |
+
encoder_static_mask = self._encoder_block_mask(
|
| 1182 |
+
b=None, # type: ignore
|
| 1183 |
+
h=None, # type: ignore
|
| 1184 |
+
q_idx=torch.arange(self.config.length)[:, None],
|
| 1185 |
+
kv_idx=torch.arange(self.config.length)[None, :],
|
| 1186 |
+
block_size=self.config.block_size
|
| 1187 |
+
if self.training
|
| 1188 |
+
else self.config.eval_block_size,
|
| 1189 |
+
)
|
| 1190 |
+
decoder_static_mask = self._decoder_block_mask(
|
| 1191 |
+
b=None,
|
| 1192 |
+
h=None,
|
| 1193 |
+
q_idx=torch.arange(self.config.length)[:, None],
|
| 1194 |
+
kv_idx=torch.arange(self.config.length * 2)[None, :],
|
| 1195 |
+
block_size=self.config.block_size
|
| 1196 |
+
if self.training
|
| 1197 |
+
else self.config.eval_block_size,
|
| 1198 |
+
seq_length=self.config.length,
|
| 1199 |
+
)
|
| 1200 |
+
self.register_buffer(
|
| 1201 |
+
"encoder_static_attention_mask",
|
| 1202 |
+
encoder_static_mask,
|
| 1203 |
+
)
|
| 1204 |
+
self.register_buffer(
|
| 1205 |
+
"static_attention_mask",
|
| 1206 |
+
decoder_static_mask,
|
| 1207 |
+
)
|
| 1208 |
+
self.skip_params_for_push.append("encoder_static_attention_mask")
|
| 1209 |
+
self.skip_params_for_push.append("static_attention_mask")
|
| 1210 |
+
|
| 1211 |
+
def _prepare_inputs(
|
| 1212 |
+
self,
|
| 1213 |
+
input_ids: torch.LongTensor,
|
| 1214 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1215 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 1216 |
+
t: Optional[torch.FloatTensor] = None,
|
| 1217 |
+
past_key_values: Optional[Cache] = None,
|
| 1218 |
+
):
|
| 1219 |
+
if attention_mask is None:
|
| 1220 |
+
attention_mask = torch.ones_like(input_ids)
|
| 1221 |
+
if context_mask is None:
|
| 1222 |
+
context_mask = torch.zeros_like(attention_mask)
|
| 1223 |
+
|
| 1224 |
+
if torch.is_floating_point(attention_mask):
|
| 1225 |
+
attention_mask = attention_mask.to(torch.int)
|
| 1226 |
+
context_mask = context_mask.to(torch.int)
|
| 1227 |
+
|
| 1228 |
+
if t is None:
|
| 1229 |
+
t = torch.rand(
|
| 1230 |
+
input_ids.shape[0],
|
| 1231 |
+
input_ids.shape[1] // self.config.block_size
|
| 1232 |
+
if self.training
|
| 1233 |
+
else self.config.eval_block_size,
|
| 1234 |
+
device=input_ids.device,
|
| 1235 |
+
).repeat_interleave(
|
| 1236 |
+
self.config.block_size
|
| 1237 |
+
if self.training
|
| 1238 |
+
else self.config.eval_block_size,
|
| 1239 |
+
dim=-1,
|
| 1240 |
+
)
|
| 1241 |
+
alpha_t, alpha_t_prime = self.noise_schedule(t)
|
| 1242 |
+
while alpha_t.ndim < 2:
|
| 1243 |
+
alpha_t = alpha_t[..., None]
|
| 1244 |
+
alpha_t_prime = alpha_t_prime[..., None]
|
| 1245 |
+
xt = self._sample_q_xt(x0=input_ids, alpha_t=alpha_t, context_mask=context_mask)
|
| 1246 |
+
# Ensure each block has at least 1 masked token
|
| 1247 |
+
if self.training:
|
| 1248 |
+
xt = self._ensure_no_unmasked_blocks(
|
| 1249 |
+
input_ids,
|
| 1250 |
+
xt,
|
| 1251 |
+
context_mask,
|
| 1252 |
+
)
|
| 1253 |
+
if self.config.attn_backend == "sdpa":
|
| 1254 |
+
decoder_attention_mask = (
|
| 1255 |
+
self.static_attention_mask[None, ...]
|
| 1256 |
+
& attention_mask.repeat(1, 2)[:, None, :]
|
| 1257 |
+
& attention_mask[..., None]
|
| 1258 |
+
)[:, None, ...] # Make attention mask 4D
|
| 1259 |
+
encoder_attention_mask = (
|
| 1260 |
+
(
|
| 1261 |
+
self.encoder_static_attention_mask[None, ...]
|
| 1262 |
+
| context_mask[:, None, :]
|
| 1263 |
+
)
|
| 1264 |
+
& attention_mask[:, None, :]
|
| 1265 |
+
& attention_mask[..., None]
|
| 1266 |
+
)[:, None, ...] # Make attention mask 4D
|
| 1267 |
+
encoder_attention_mask = self._preprocess_attention_mask(
|
| 1268 |
+
encoder_attention_mask, dtype=torch.float
|
| 1269 |
+
)
|
| 1270 |
+
decoder_attention_mask = self._preprocess_attention_mask(
|
| 1271 |
+
decoder_attention_mask, dtype=torch.float
|
| 1272 |
+
)
|
| 1273 |
+
elif self.config.attn_backend == "flex_attention":
|
| 1274 |
+
# TODO enable bidirectional attention on context for seq2seq tasks
|
| 1275 |
+
if context_mask.any():
|
| 1276 |
+
raise NotImplementedError(
|
| 1277 |
+
"flex_attention with context_mask not implemented yet."
|
| 1278 |
+
)
|
| 1279 |
+
elif attention_mask is not None and (attention_mask != 1).any():
|
| 1280 |
+
padding_mask = create_attn_mask(attention_mask.bool())
|
| 1281 |
+
dec_padding_mask = create_attn_mask(attention_mask.repeat(1, 2).bool())
|
| 1282 |
+
enc_masks = [
|
| 1283 |
+
partial(
|
| 1284 |
+
self._encoder_block_mask,
|
| 1285 |
+
block_size=self.config.block_size
|
| 1286 |
+
if self.training
|
| 1287 |
+
else self.config.eval_block_size,
|
| 1288 |
+
),
|
| 1289 |
+
padding_mask,
|
| 1290 |
+
]
|
| 1291 |
+
encoder_attention_mask = create_block_mask(
|
| 1292 |
+
and_masks(*enc_masks),
|
| 1293 |
+
B=input_ids.shape[0],
|
| 1294 |
+
H=None,
|
| 1295 |
+
Q_LEN=input_ids.shape[1],
|
| 1296 |
+
KV_LEN=input_ids.shape[1],
|
| 1297 |
+
)
|
| 1298 |
+
dec_masks = [
|
| 1299 |
+
partial(
|
| 1300 |
+
self._decoder_block_mask,
|
| 1301 |
+
block_size=self.config.block_size
|
| 1302 |
+
if self.training
|
| 1303 |
+
else self.config.eval_block_size,
|
| 1304 |
+
seq_length=input_ids.shape[1],
|
| 1305 |
+
),
|
| 1306 |
+
dec_padding_mask,
|
| 1307 |
+
]
|
| 1308 |
+
decoder_attention_mask = create_block_mask(
|
| 1309 |
+
and_masks(*dec_masks),
|
| 1310 |
+
B=input_ids.shape[0],
|
| 1311 |
+
H=None,
|
| 1312 |
+
Q_LEN=input_ids.shape[1],
|
| 1313 |
+
KV_LEN=input_ids.shape[1] * 2,
|
| 1314 |
+
)
|
| 1315 |
+
else:
|
| 1316 |
+
encoder_attention_mask = self.encoder_static_attention_mask
|
| 1317 |
+
decoder_attention_mask = self.static_attention_mask
|
| 1318 |
+
else:
|
| 1319 |
+
raise ValueError("Unknown backbone backend")
|
| 1320 |
+
position_ids = torch.arange(input_ids.shape[1]).to(input_ids.device)[None, :]
|
| 1321 |
+
if self.training and self.config.train_on_context:
|
| 1322 |
+
tokens_mask = attention_mask
|
| 1323 |
+
else:
|
| 1324 |
+
tokens_mask = attention_mask * (1 - context_mask)
|
| 1325 |
+
return DenoiserInput(
|
| 1326 |
+
xt=xt,
|
| 1327 |
+
x0=input_ids,
|
| 1328 |
+
attention_mask=decoder_attention_mask,
|
| 1329 |
+
tokens_mask=tokens_mask,
|
| 1330 |
+
t=t,
|
| 1331 |
+
alpha_t=alpha_t,
|
| 1332 |
+
alpha_t_prime=alpha_t_prime,
|
| 1333 |
+
backbone_kwargs={
|
| 1334 |
+
"encoder_input_ids": input_ids,
|
| 1335 |
+
"encoder_attention_mask": encoder_attention_mask,
|
| 1336 |
+
"encoder_position_ids": position_ids,
|
| 1337 |
+
"encoder_cache_position": position_ids[0],
|
| 1338 |
+
},
|
| 1339 |
+
)
|
| 1340 |
+
|
| 1341 |
+
def _prepare_inputs_inference(
|
| 1342 |
+
self,
|
| 1343 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1344 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1345 |
+
context: Optional[torch.LongTensor] = None,
|
| 1346 |
+
context_mask: Optional[torch.FloatTensor] = None,
|
| 1347 |
+
cache: Optional[Dict[str, Any]] = None,
|
| 1348 |
+
return_updated_cache: bool = False,
|
| 1349 |
+
**backbone_kwargs: Dict[str, Any],
|
| 1350 |
+
) -> Tuple[DenoiserInput, Union[Dict[str, Any], None]]:
|
| 1351 |
+
device = input_ids.device if input_ids is not None else context.device
|
| 1352 |
+
batch_size = input_ids.shape[0] if input_ids is not None else context.shape[0]
|
| 1353 |
+
assert input_ids is not None or context is not None, (
|
| 1354 |
+
"Must provide either input_ids or context."
|
| 1355 |
+
)
|
| 1356 |
+
if return_updated_cache: # Indicates this is a cache update step
|
| 1357 |
+
context = input_ids
|
| 1358 |
+
input_ids = None
|
| 1359 |
+
position_ids, encoder_position_ids = None, None
|
| 1360 |
+
if cache is not None:
|
| 1361 |
+
past_key_values = cache.pop("past_key_values", DynamicCache())
|
| 1362 |
+
encoder_past_key_values = cache.pop(
|
| 1363 |
+
"encoder_past_key_values", DynamicCache()
|
| 1364 |
+
)
|
| 1365 |
+
encoder_last_hidden_state = cache.pop("encoder_last_hidden_state", None)
|
| 1366 |
+
if input_ids is not None: # Skip enc: nothing new to cache
|
| 1367 |
+
cache_length = self._get_past_key_values_seq_length(past_key_values)
|
| 1368 |
+
if encoder_last_hidden_state is not None:
|
| 1369 |
+
full_seq_length = (
|
| 1370 |
+
cache_length
|
| 1371 |
+
+ encoder_last_hidden_state.shape[1] # type: ignore
|
| 1372 |
+
+ input_ids.shape[-1]
|
| 1373 |
+
)
|
| 1374 |
+
else:
|
| 1375 |
+
full_seq_length = cache_length + input_ids.shape[-1]
|
| 1376 |
+
encoder_attention_mask = None
|
| 1377 |
+
position_ids = torch.arange(
|
| 1378 |
+
cache_length, full_seq_length, device=device
|
| 1379 |
+
)[None, :]
|
| 1380 |
+
else: # Caching new tokens in the enc
|
| 1381 |
+
encoder_cache_length = self._get_past_key_values_seq_length(
|
| 1382 |
+
encoder_past_key_values
|
| 1383 |
+
if len(encoder_past_key_values) > 0
|
| 1384 |
+
else past_key_values
|
| 1385 |
+
)
|
| 1386 |
+
encoder_full_seq_length = encoder_cache_length + context.shape[-1]
|
| 1387 |
+
encoder_attention_mask = torch.ones(
|
| 1388 |
+
(
|
| 1389 |
+
1,
|
| 1390 |
+
1,
|
| 1391 |
+
encoder_full_seq_length - encoder_cache_length,
|
| 1392 |
+
encoder_full_seq_length,
|
| 1393 |
+
),
|
| 1394 |
+
device=context.device,
|
| 1395 |
+
)
|
| 1396 |
+
encoder_position_ids = torch.arange(
|
| 1397 |
+
encoder_cache_length, encoder_full_seq_length
|
| 1398 |
+
).to(device)[None, :]
|
| 1399 |
+
encoder_attention_mask = self._preprocess_attention_mask(
|
| 1400 |
+
encoder_attention_mask, dtype=torch.float
|
| 1401 |
+
)
|
| 1402 |
+
full_seq_length = -1 # Not used
|
| 1403 |
+
else: # Not using kv-cache
|
| 1404 |
+
past_key_values = None
|
| 1405 |
+
encoder_past_key_values, encoder_last_hidden_state = None, None
|
| 1406 |
+
if context is not None:
|
| 1407 |
+
context_len = context.shape[1]
|
| 1408 |
+
encoder_attention_mask = torch.ones(
|
| 1409 |
+
(1, 1, context_len, context_len), device=context.device
|
| 1410 |
+
)
|
| 1411 |
+
encoder_attention_mask = self._preprocess_attention_mask(
|
| 1412 |
+
encoder_attention_mask, dtype=torch.float
|
| 1413 |
+
)
|
| 1414 |
+
encoder_position_ids = torch.arange(context_len).to(device)[None, :]
|
| 1415 |
+
else:
|
| 1416 |
+
context_len = 0
|
| 1417 |
+
encoder_attention_mask = None
|
| 1418 |
+
if input_ids is not None:
|
| 1419 |
+
full_seq_length = context_len + input_ids.shape[1]
|
| 1420 |
+
else:
|
| 1421 |
+
full_seq_length = context_len
|
| 1422 |
+
position_ids = torch.arange(context_len, full_seq_length).to(device)[
|
| 1423 |
+
None, :
|
| 1424 |
+
]
|
| 1425 |
+
if input_ids is not None:
|
| 1426 |
+
decoder_attention_mask = torch.ones(
|
| 1427 |
+
(batch_size, 1, input_ids.shape[1], full_seq_length),
|
| 1428 |
+
device=device,
|
| 1429 |
+
) # Make attention mask 4D
|
| 1430 |
+
decoder_attention_mask = self._preprocess_attention_mask(
|
| 1431 |
+
decoder_attention_mask, dtype=torch.float
|
| 1432 |
+
)
|
| 1433 |
+
else:
|
| 1434 |
+
decoder_attention_mask = None
|
| 1435 |
+
return DenoiserInput(
|
| 1436 |
+
xt=input_ids,
|
| 1437 |
+
attention_mask=decoder_attention_mask,
|
| 1438 |
+
context_mask=context_mask,
|
| 1439 |
+
past_key_values=past_key_values,
|
| 1440 |
+
backbone_kwargs={
|
| 1441 |
+
"position_ids": position_ids,
|
| 1442 |
+
"encoder_input_ids": context,
|
| 1443 |
+
"encoder_position_ids": encoder_position_ids,
|
| 1444 |
+
"encoder_attention_mask": encoder_attention_mask,
|
| 1445 |
+
"encoder_past_key_values": encoder_past_key_values,
|
| 1446 |
+
"encoder_last_hidden_state": encoder_last_hidden_state,
|
| 1447 |
+
}
|
| 1448 |
+
| backbone_kwargs,
|
| 1449 |
+
), cache # TODO: potentially returning cache None, violates return type
|
| 1450 |
+
|
| 1451 |
+
def _compute_loss(
|
| 1452 |
+
self,
|
| 1453 |
+
model_output: torch.FloatTensor,
|
| 1454 |
+
denoiser_inputs: DenoiserInput,
|
| 1455 |
+
**kwargs: Any,
|
| 1456 |
+
) -> LossAndNllOutput:
|
| 1457 |
+
# Use MDLM `_compute_loss`, since BD3LM method splits model_output
|
| 1458 |
+
return super(BD3LM, self)._compute_loss(
|
| 1459 |
+
model_output=model_output,
|
| 1460 |
+
denoiser_inputs=denoiser_inputs,
|
| 1461 |
+
**kwargs,
|
| 1462 |
+
)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:29daae41ab012a61516d316e7cd54de035044e6c8890395ccc542ba161c07aa1
|
| 3 |
+
size 1016097199
|