--- library_name: transformers license: apache-2.0 datasets: - wmt/wmt14 --- # Quick start guide To use this models, follow the snippet below: ```python from transformers import AutoModelForMaskedLM # model_config_overrides = {} # Use this to optionally override config parameters model = AutoModelForMaskedLM.from_pretrained( "kuleshov-group/e2d2-wmt", trust_remote_code=True, # **model_config_overrides, ) ``` # Model details - Trained from scratch on [`wmt/wmt14`](https://huggingface.co/datasets/wmt/wmt14) - Qwen3 tokenizer: [`Qwen/Qwen3-0.6B-Base`](https://huggingface.co/Qwen/Qwen3-0.6B-Base) - Block diffusion parameterization, with block size 4 See the project site for more details and link to the paper and code: https://m-arriola.com/e2d2/ # Citation ``` @inproceedings{ arriola2025e2d2, title={Encoder-Decoder Diffusion Language Models for Efficient Training and Inference}, author={Marianne Arriola and Yair Schiff and Hao Phung and Aaron Gokaslan and Volodymyr Kuleshov}, booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems}, year={2025}, url={https://arxiv.org/abs/2510.22852} } ```