Update README.md
Browse files
README.md
CHANGED
|
@@ -148,4 +148,115 @@ grid
|
|
| 148 |
|
| 149 |

|
| 150 |
|
|
|
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |

|
| 150 |
|
| 151 |
+
## Fine-tuning script
|
| 152 |
|
| 153 |
+
Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
|
| 154 |
+
|
| 155 |
+
You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder).
|
| 156 |
+
|
| 157 |
+
The code will automatically download the training script.
|
| 158 |
+
|
| 159 |
+
The training script can handle custom prompts associated with each image, which are generated using BLIP.
|
| 160 |
+
|
| 161 |
+
For instance, for the images used here, they are:
|
| 162 |
+
|
| 163 |
+
```raw
|
| 164 |
+
['<leaf microstructure>, a close up of a green plant with a lot of small holes',
|
| 165 |
+
'<leaf microstructure>, a close up of a leaf with a small insect on it',
|
| 166 |
+
'<leaf microstructure>, a close up of a plant with a lot of green leaves',
|
| 167 |
+
'<leaf microstructure>, a close up of a green plant with a yellow light',
|
| 168 |
+
'<leaf microstructure>, a close up of a green plant with a white center',
|
| 169 |
+
'<leaf microstructure>, arafed leaf with a white line on the center',
|
| 170 |
+
'<leaf microstructure>, a close up of a leaf with a yellow light shining through it',
|
| 171 |
+
'<leaf microstructure>, arafed image of a green plant with a yellow cross']
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
Training then proceeds as:
|
| 175 |
+
|
| 176 |
+
```python
|
| 177 |
+
HF_username = 'lamm-mit'
|
| 178 |
+
|
| 179 |
+
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0"
|
| 180 |
+
pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix"
|
| 181 |
+
|
| 182 |
+
instance_prompt ="<leaf microstructure>"
|
| 183 |
+
instance_data_dir = "./leaf_concept_dir_SDXL/"
|
| 184 |
+
|
| 185 |
+
val_prompt = "a vase that resembles a <leaf microstructure>, high quality"
|
| 186 |
+
val_epochs = 100
|
| 187 |
+
|
| 188 |
+
instance_output_dir="leaf_LoRA_SDXL_V10" #for checkpointing
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
Dataset generatio with custom per-image captions
|
| 192 |
+
```python
|
| 193 |
+
import requests
|
| 194 |
+
from transformers import AutoProcessor, BlipForConditionalGeneration
|
| 195 |
+
import torch
|
| 196 |
+
import glob
|
| 197 |
+
from PIL import Image
|
| 198 |
+
import json
|
| 199 |
+
|
| 200 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 201 |
+
|
| 202 |
+
# load the processor and the captioning model
|
| 203 |
+
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
| 204 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large",torch_dtype=torch.float16).to(device)
|
| 205 |
+
|
| 206 |
+
# captioning utility
|
| 207 |
+
def caption_images(input_image):
|
| 208 |
+
inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16)
|
| 209 |
+
pixel_values = inputs.pixel_values
|
| 210 |
+
|
| 211 |
+
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
|
| 212 |
+
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 213 |
+
return generated_caption
|
| 214 |
+
|
| 215 |
+
caption_prefix = f"{instance_prompt}, "
|
| 216 |
+
with open(f'{instance_data_dir}metadata.jsonl', 'w') as outfile:
|
| 217 |
+
for img in imgs_and_paths:
|
| 218 |
+
caption = caption_prefix + caption_images(img[1]).split("\n")[0]
|
| 219 |
+
entry = {"file_name":img[0].split("/")[-1], "prompt": caption}
|
| 220 |
+
json.dump(entry, outfile)
|
| 221 |
+
outfile.write('\n')
|
| 222 |
+
```
|
| 223 |
+
This produces a JSON file in the ```instance_data_dir``` directory:
|
| 224 |
+
|
| 225 |
+
```json
|
| 226 |
+
{"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
|
| 227 |
+
{"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
|
| 228 |
+
{"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}
|
| 229 |
+
{"file_name": "3.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow substance in it"}
|
| 230 |
+
{"file_name": "87.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a yellow light"}
|
| 231 |
+
{"file_name": "88.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a white center"}
|
| 232 |
+
{"file_name": "90.jpg", "prompt": "<leaf microstructure>, arafed leaf with a white line on the center"}
|
| 233 |
+
{"file_name": "91.jpg", "prompt": "<leaf microstructure>, arafed image of a green leaf with a white spot"}
|
| 234 |
+
{"file_name": "92.jpg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow light shining through it"}
|
| 235 |
+
{"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
|
| 236 |
+
```
|
| 237 |
+
|
| 238 |
+
```raw
|
| 239 |
+
!accelerate launch train_dreambooth_lora_sdxl.py \
|
| 240 |
+
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
|
| 241 |
+
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
|
| 242 |
+
--dataset_name="{instance_data_dir}" \
|
| 243 |
+
--output_dir="{instance_output_dir}" \
|
| 244 |
+
--caption_column="prompt"\
|
| 245 |
+
--mixed_precision="fp16" \
|
| 246 |
+
--instance_prompt="{instance_prompt}" \
|
| 247 |
+
--validation_prompt="{val_prompt}" \
|
| 248 |
+
--validation_epochs="{val_epochs}" \
|
| 249 |
+
--resolution=1024 \
|
| 250 |
+
--train_batch_size=1 \
|
| 251 |
+
--gradient_accumulation_steps=3 \
|
| 252 |
+
--gradient_checkpointing \
|
| 253 |
+
--learning_rate=1e-4 \
|
| 254 |
+
--snr_gamma=5.0 \
|
| 255 |
+
--lr_scheduler="constant" \
|
| 256 |
+
--lr_warmup_steps=0 \
|
| 257 |
+
--mixed_precision="fp16" \
|
| 258 |
+
--use_8bit_adam \
|
| 259 |
+
--max_train_steps=500 \
|
| 260 |
+
--checkpointing_steps=500 \
|
| 261 |
+
--seed="0"
|
| 262 |
+
```
|