Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: pt
|
| 3 |
+
datasets:
|
| 4 |
+
- common_voice
|
| 5 |
+
- mls
|
| 6 |
+
- cetuc
|
| 7 |
+
- lapsbm
|
| 8 |
+
- voxforge
|
| 9 |
+
- tedx
|
| 10 |
+
- sid
|
| 11 |
+
metrics:
|
| 12 |
+
- wer
|
| 13 |
+
tags:
|
| 14 |
+
- audio
|
| 15 |
+
- speech
|
| 16 |
+
- wav2vec2
|
| 17 |
+
- pt
|
| 18 |
+
- portuguese-speech-corpus
|
| 19 |
+
- automatic-speech-recognition
|
| 20 |
+
- speech
|
| 21 |
+
- PyTorch
|
| 22 |
+
license: apache-2.0
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# commonvoice10-xlsr: Wav2vec 2.0 with Common Voice Dataset
|
| 26 |
+
|
| 27 |
+
This is a the demonstration of a fine-tuned Wav2vec model for Brazilian Portuguese using the [Common Voice 7.0](https://commonvoice.mozilla.org/pt) dataset.
|
| 28 |
+
|
| 29 |
+
In this notebook the model is tested against other available Brazilian Portuguese datasets.
|
| 30 |
+
|
| 31 |
+
| Dataset | Train | Valid | Test |
|
| 32 |
+
|--------------------------------|-------:|------:|------:|
|
| 33 |
+
| CETUC | | -- | 5.4h |
|
| 34 |
+
| Common Voice | 37.8h | -- | 9.5h |
|
| 35 |
+
| LaPS BM | | -- | 0.1h |
|
| 36 |
+
| MLS | | -- | 3.7h |
|
| 37 |
+
| Multilingual TEDx (Portuguese) | | -- | 1.8h |
|
| 38 |
+
| SID | | -- | 1.0h |
|
| 39 |
+
| VoxForge | | -- | 0.1h |
|
| 40 |
+
| Total | | -- | 21.6h |
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
#### Summary
|
| 44 |
+
|
| 45 |
+
| | CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG |
|
| 46 |
+
|----------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|
| 47 |
+
| commonvoice10 (demonstration below) | 0.133 | 0.189 | 0.165 | 0.189 | 0.247 | 0.474 | 0.251 | 0.235 |
|
| 48 |
+
| commonvoice10 + 4-gram (demonstration below) | 0.060 | 0.117 | 0.088 | 0.136 | 0.181 | 0.394 | 0.227 | 0.171 |
|
| 49 |
+
|
| 50 |
+
## Demonstration
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
MODEL_NAME = "lgris/commonvoice10-xlsr"
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### Imports and dependencies
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
%%capture
|
| 62 |
+
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
|
| 63 |
+
!pip install datasets
|
| 64 |
+
!pip install jiwer
|
| 65 |
+
!pip install transformers
|
| 66 |
+
!pip install soundfile
|
| 67 |
+
!pip install pyctcdecode
|
| 68 |
+
!pip install https://github.com/kpu/kenlm/archive/master.zip
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
import jiwer
|
| 74 |
+
import torchaudio
|
| 75 |
+
from datasets import load_dataset, load_metric
|
| 76 |
+
from transformers import (
|
| 77 |
+
Wav2Vec2ForCTC,
|
| 78 |
+
Wav2Vec2Processor,
|
| 79 |
+
)
|
| 80 |
+
from pyctcdecode import build_ctcdecoder
|
| 81 |
+
import torch
|
| 82 |
+
import re
|
| 83 |
+
import sys
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### Helpers
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605
|
| 91 |
+
|
| 92 |
+
def map_to_array(batch):
|
| 93 |
+
speech, _ = torchaudio.load(batch["path"])
|
| 94 |
+
batch["speech"] = speech.squeeze(0).numpy()
|
| 95 |
+
batch["sampling_rate"] = 16_000
|
| 96 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
|
| 97 |
+
batch["target"] = batch["sentence"]
|
| 98 |
+
return batch
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
```python
|
| 103 |
+
def calc_metrics(truths, hypos):
|
| 104 |
+
wers = []
|
| 105 |
+
mers = []
|
| 106 |
+
wils = []
|
| 107 |
+
for t, h in zip(truths, hypos):
|
| 108 |
+
try:
|
| 109 |
+
wers.append(jiwer.wer(t, h))
|
| 110 |
+
mers.append(jiwer.mer(t, h))
|
| 111 |
+
wils.append(jiwer.wil(t, h))
|
| 112 |
+
except: # Empty string?
|
| 113 |
+
pass
|
| 114 |
+
wer = sum(wers)/len(wers)
|
| 115 |
+
mer = sum(mers)/len(mers)
|
| 116 |
+
wil = sum(wils)/len(wils)
|
| 117 |
+
return wer, mer, wil
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
def load_data(dataset):
|
| 123 |
+
data_files = {'test': f'{dataset}/test.csv'}
|
| 124 |
+
dataset = load_dataset('csv', data_files=data_files)["test"]
|
| 125 |
+
return dataset.map(map_to_array)
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
### Model
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
```python
|
| 132 |
+
class STT:
|
| 133 |
+
|
| 134 |
+
def __init__(self,
|
| 135 |
+
model_name,
|
| 136 |
+
device='cuda' if torch.cuda.is_available() else 'cpu',
|
| 137 |
+
lm=None):
|
| 138 |
+
self.model_name = model_name
|
| 139 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
|
| 140 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
| 141 |
+
self.vocab_dict = self.processor.tokenizer.get_vocab()
|
| 142 |
+
self.sorted_dict = {
|
| 143 |
+
k.lower(): v for k, v in sorted(self.vocab_dict.items(),
|
| 144 |
+
key=lambda item: item[1])
|
| 145 |
+
}
|
| 146 |
+
self.device = device
|
| 147 |
+
self.lm = lm
|
| 148 |
+
if self.lm:
|
| 149 |
+
self.lm_decoder = build_ctcdecoder(
|
| 150 |
+
list(self.sorted_dict.keys()),
|
| 151 |
+
self.lm
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
def batch_predict(self, batch):
|
| 155 |
+
features = self.processor(batch["speech"],
|
| 156 |
+
sampling_rate=batch["sampling_rate"][0],
|
| 157 |
+
padding=True,
|
| 158 |
+
return_tensors="pt")
|
| 159 |
+
input_values = features.input_values.to(self.device)
|
| 160 |
+
attention_mask = features.attention_mask.to(self.device)
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
logits = self.model(input_values, attention_mask=attention_mask).logits
|
| 163 |
+
if self.lm:
|
| 164 |
+
logits = logits.cpu().numpy()
|
| 165 |
+
batch["predicted"] = []
|
| 166 |
+
for sample_logits in logits:
|
| 167 |
+
batch["predicted"].append(self.lm_decoder.decode(sample_logits))
|
| 168 |
+
else:
|
| 169 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
| 170 |
+
batch["predicted"] = self.processor.batch_decode(pred_ids)
|
| 171 |
+
return batch
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
### Download datasets
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
```python
|
| 178 |
+
%%capture
|
| 179 |
+
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI
|
| 180 |
+
!mkdir bp_dataset
|
| 181 |
+
!unzip bp_dataset -d bp_dataset/
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
### Tests
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
```python
|
| 188 |
+
stt = STT(MODEL_NAME)
|
| 189 |
+
```
|
| 190 |
+
|
| 191 |
+
#### CETUC
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
```python
|
| 195 |
+
ds = load_data('cetuc_dataset')
|
| 196 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 197 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 198 |
+
print("CETUC WER:", wer)
|
| 199 |
+
```
|
| 200 |
+
CETUC WER: 0.13291846056190185
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
#### Common Voice
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
```python
|
| 207 |
+
ds = load_data('commonvoice_dataset')
|
| 208 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 209 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 210 |
+
print("CV WER:", wer)
|
| 211 |
+
```
|
| 212 |
+
CV WER: 0.18909733896486755
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
#### LaPS
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
```python
|
| 219 |
+
ds = load_data('lapsbm_dataset')
|
| 220 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 221 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 222 |
+
print("Laps WER:", wer)
|
| 223 |
+
```
|
| 224 |
+
Laps WER: 0.1655429292929293
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
#### MLS
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
```python
|
| 231 |
+
ds = load_data('mls_dataset')
|
| 232 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 233 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 234 |
+
print("MLS WER:", wer)
|
| 235 |
+
```
|
| 236 |
+
MLS WER: 0.1894711228284466
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
#### SID
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
```python
|
| 243 |
+
ds = load_data('sid_dataset')
|
| 244 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 245 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 246 |
+
print("Sid WER:", wer)
|
| 247 |
+
```
|
| 248 |
+
Sid WER: 0.2471983709551264
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
#### TEDx
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
```python
|
| 255 |
+
ds = load_data('tedx_dataset')
|
| 256 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 257 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 258 |
+
print("TEDx WER:", wer)
|
| 259 |
+
```
|
| 260 |
+
TEDx WER: 0.4739658565194102
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
#### VoxForge
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
```python
|
| 267 |
+
ds = load_data('voxforge_dataset')
|
| 268 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 269 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 270 |
+
print("VoxForge WER:", wer)
|
| 271 |
+
```
|
| 272 |
+
VoxForge WER: 0.2510294913419914
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
### Tests with LM
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
```python
|
| 279 |
+
# !find -type f -name "*.wav" -delete
|
| 280 |
+
!rm -rf ~/.cache
|
| 281 |
+
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia
|
| 282 |
+
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
|
| 283 |
+
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp
|
| 284 |
+
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa')
|
| 285 |
+
```
|
| 286 |
+
|
| 287 |
+
#### CETUC
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
```python
|
| 291 |
+
ds = load_data('cetuc_dataset')
|
| 292 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 293 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 294 |
+
print("CETUC WER:", wer)
|
| 295 |
+
```
|
| 296 |
+
CETUC WER: 0.060609303416680915
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
#### Common Voice
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
```python
|
| 303 |
+
ds = load_data('commonvoice_dataset')
|
| 304 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 305 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 306 |
+
print("CV WER:", wer)
|
| 307 |
+
```
|
| 308 |
+
CV WER: 0.11758415681158373
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
#### LaPS
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
```python
|
| 315 |
+
ds = load_data('lapsbm_dataset')
|
| 316 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 317 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 318 |
+
print("Laps WER:", wer)
|
| 319 |
+
```
|
| 320 |
+
Laps WER: 0.08815340909090909
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
#### MLS
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
```python
|
| 327 |
+
ds = load_data('mls_dataset')
|
| 328 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 329 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 330 |
+
print("MLS WER:", wer)
|
| 331 |
+
```
|
| 332 |
+
MLS WER: 0.1359966791836458
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
#### SID
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
```python
|
| 339 |
+
ds = load_data('sid_dataset')
|
| 340 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 341 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 342 |
+
print("Sid WER:", wer)
|
| 343 |
+
```
|
| 344 |
+
Sid WER: 0.1818429601530829
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
#### TEDx
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
```python
|
| 351 |
+
ds = load_data('tedx_dataset')
|
| 352 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 353 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 354 |
+
print("TEDx WER:", wer)
|
| 355 |
+
```
|
| 356 |
+
TEDx WER: 0.39469326522731385
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
#### VoxForge
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
```python
|
| 363 |
+
ds = load_data('voxforge_dataset')
|
| 364 |
+
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
|
| 365 |
+
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
|
| 366 |
+
print("VoxForge WER:", wer)
|
| 367 |
+
```
|
| 368 |
+
VoxForge WER: 0.22779897186147183
|
| 369 |
+
|