File size: 12,122 Bytes
825c3f0
5a00694
 
457a782
 
 
 
 
 
 
 
 
5a00694
457a782
825c3f0
457a782
8bec9b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
---
license: apache-2.0
tags:
- diffusion-single-file
- comfyui
- distillation
- LoRA
- video
- video genration
pipeline_tags:
- image-to-video
- text-to-video
base_model:
- Wan-AI/Wan2.2-I2V-A14B
library_name: diffusers
pipeline_tag: image-to-video
---

# 🎬 Wan2.2 Distilled LoRA Models

### ⚑ High-Performance Video Generation with 4-Step Inference Using LoRA

*LoRA weights extracted from Wan2.2 distilled models - Flexible deployment with excellent generation quality*

![img_lightx2v](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F680de13385293771bc57400b%2FtTnp8-ARpj3wGxfo5P55c.png%3C%2Fspan%3E)

---

[![πŸ€— HuggingFace](https://img.shields.io/badge/πŸ€—-HuggingFace-yellow)](https://huggingface.co/lightx2v/Wan2.2-Distill-Loras)
[![GitHub](https://img.shields.io/badge/GitHub-LightX2V-blue?logo=github)](https://github.com/ModelTC/LightX2V)
[![License](https://img.shields.io/badge/License-Apache%202.0-green.svg)](LICENSE)

---

## 🌟 What's Special?

<table>
<tr>
<td width="50%">

### ⚑ Flexible Deployment
- **Base Model + LoRA**: Can be combined with base models
- **Offline Merging**: Pre-merge LoRA into models
- **Online Loading**: Dynamically load LoRA during inference
- **Multiple Frameworks**: Supports LightX2V and ComfyUI

</td>
<td width="50%">

### 🎯 Dual Noise Control
- **High Noise**: More creative, diverse outputs
- **Low Noise**: More faithful to input, stable outputs
- Rank 64 LoRA, compact size

</td>
</tr>
<tr>
<td width="50%">

### πŸ’Ύ Storage Efficient
- **Small LoRA Size**: Significantly smaller than full models
- **Flexible Combination**: Can be combined with quantization
- **Easy Sharing**: Convenient for model weight distribution

</td>
<td width="50%">

### πŸš€ 4-Step Inference
- **Ultra-Fast Generation**: Generate high-quality videos in just 4 steps
- **Distillation Acceleration**: Inherits advantages of distilled models
- **Quality Assurance**: Maintains excellent generation quality

</td>
</tr>
</table>

---

## πŸ“¦ LoRA Model Catalog

### πŸŽ₯ Available LoRA Models

| Task Type | Noise Level | Model File | Rank | Purpose |
|:-------:|:--------:|:---------|:----:|:-----|
| **I2V** | High Noise | `wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors` | 64 | More creative image-to-video |
| **I2V** | Low Noise | `wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors` | 64 | More stable image-to-video |

> πŸ’‘ **Note**: 
> - `xxx` in filenames represents version number or timestamp, please check [HuggingFace repository](https://huggingface.co/lightx2v/Wan2.2-Distill-Loras/tree/main) for the latest version
> - These LoRAs must be used with Wan2.2 base models

---

## πŸš€ Usage

### Prerequisites

**Base Model**: You need to prepare Wan2.2 I2V base model (original model without distillation)

Download base model (choose one):

**Method 1: From LightX2V Official Repository (Recommended)**
```bash
# Download high noise base model
huggingface-cli download lightx2v/Wan2.2-Official-Models \
    wan2.2_i2v_A14b_high_noise_lightx2v.safetensors \
    --local-dir ./models/Wan2.2-Official-Models

# Download low noise base model
huggingface-cli download lightx2v/Wan2.2-Official-Models \
    wan2.2_i2v_A14b_low_noise_lightx2v.safetensors \
    --local-dir ./models/Wan2.2-Official-Models
```

**Method 2: From Wan-AI Official Repository**
```bash
huggingface-cli download Wan-AI/Wan2.2-I2V-A14B \
    --local-dir ./models/Wan2.2-I2V-A14B
```

> πŸ’‘ **Note**: [lightx2v/Wan2.2-Official-Models](https://huggingface.co/lightx2v/Wan2.2-Official-Models) provides separate high noise and low noise base models, download as needed

### Method 1: LightX2V - Offline LoRA Merging (Recommended ⭐)

**Offline LoRA merging provides best performance and supports quantization simultaneously.**

#### 1.1 Download LoRA Models

```bash
# Download both LoRAs (high noise and low noise)
# Note: xxx represents version number, please check HuggingFace for actual filename
huggingface-cli download lightx2v/Wan2.2-Distill-Loras \
    wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --local-dir ./loras/
```

#### 1.2 Merge LoRA (Basic Merging)

**Merge LoRA:**
```bash
cd LightX2V/tools/convert

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/high_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_high_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_high_noise_lightx2v_4step \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --single_file

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/low_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_low_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_low_noise_lightx2v_4step \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --single_file
```

#### 1.3 Merge LoRA + Quantization (Recommended)

**Merge LoRA + FP8 Quantization:**
```bash
cd LightX2V/tools/convert

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/high_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_high_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.bfloat16 \
    --single_file

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/low_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_low_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.bfloat16 \
    --single_file
```

**Merge LoRA + ComfyUI FP8 Format:**
```bash
cd LightX2V/tools/convert

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/high_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_high_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_high_noise_scaled_fp8_e4m3_lightx2v_4step_comfyui \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.bfloat16 \
    --single_file \
    --comfyui_mode

# For directory-based base model: --source /path/to/Wan2.2-I2V-A14B/low_noise_model/
python converter.py \
    --source ./models/Wan2.2-Official-Models/wan2.2_i2v_A14b_low_noise_lightx2v.safetensors \
    --output /path/to/output/ \
    --output_ext .safetensors \
    --output_name wan2.2_i2v_A14b_low_noise_scaled_fp8_e4m3_lightx2v_4step_comfyui \
    --model_type wan_dit \
    --lora_path /path/to/loras/wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.bfloat16 \
    --single_file \
    --comfyui_mode
```

> πŸ“ **Reference Documentation**: For more merging options, see [LightX2V Model Conversion Documentation](https://github.com/ModelTC/LightX2V/blob/main/tools/convert/readme_zh.md)

---

### Method 2: LightX2V - Online LoRA Loading

**Online LoRA loading requires no pre-merging, loads dynamically during inference, more flexible.**

#### 2.1 Download LoRA Models

```bash
# Download both LoRAs (high noise and low noise)
# Note: xxx represents version number, please check HuggingFace for actual filename
huggingface-cli download lightx2v/Wan2.2-Distill-Loras \
    wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors \
    --local-dir ./loras/
```

#### 2.2 Use Configuration File

Reference configuration file: [wan_moe_i2v_distil_with_lora.json](https://github.com/ModelTC/LightX2V/blob/main/configs/wan22/wan_moe_i2v_distil_with_lora.json)

LoRA configuration example in config file:
```json
{
    "lora_configs": [
        {
            "name": "high_noise_model",
            "path": "/path/to/loras/wan2.2_i2v_A14b_high_noise_lora_rank64_lightx2v_4step_xxx.safetensors",
            "strength": 1.0
        },
        {
            "name": "low_noise_model",
            "path": "/path/to/loras/wan2.2_i2v_A14b_low_noise_lora_rank64_lightx2v_4step_xxx.safetensors",
            "strength": 1.0
        }
    ]
}
```

> πŸ’‘ **Tip**: Replace `xxx` with actual version number (e.g., `1022`). Check [HuggingFace repository](https://huggingface.co/lightx2v/Wan2.2-Distill-Loras/tree/main) for the latest version


#### 2.3 Run Inference

Using [I2V](https://github.com/ModelTC/LightX2V/blob/main/scripts/wan22/run_wan22_moe_i2v_distill.sh) as example:
```bash
cd scripts
bash wan22/run_wan22_moe_i2v_distill.sh
```

### Method 3: ComfyUI

Please refer to [workflow](https://huggingface.co/lightx2v/Wan2.2-Distill-Loras/blob/main/wan2.2_i2v_scale_fp8_comfyui_with_lora.json)

## ⚠️ Important Notes

1. **Base Model Requirement**: These LoRAs must be used with Wan2.2-I2V-A14B base model, cannot be used standalone

2. **Other Components**: In addition to DIT model and LoRA, the following are also required at runtime:
   - T5 text encoder
   - CLIP vision encoder
   - VAE encoder/decoder
   - Tokenizer
   
   Please refer to [LightX2V Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html) for how to organize complete model directory

3. **Inference Configuration**: When using 4-step inference, configure correct `denoising_step_list`, recommended: `[1000, 750, 500, 250]`


## πŸ“š Related Resources

### Documentation Links
- **LightX2V Quick Start**: [Quick Start Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/quickstart.html)
- **Model Conversion Tool**: [Conversion Tool Documentation](https://github.com/ModelTC/LightX2V/blob/main/tools/convert/readme_zh.md)
- **Online LoRA Loading**: [Configuration File Example](https://github.com/ModelTC/LightX2V/blob/main/configs/wan22/wan_moe_i2v_distil_with_lora.json)
- **Quantization Guide**: [Quantization Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/quantization.html)
- **Model Structure**: [Model Structure Documentation](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html)

### Related Models
- **Distilled Full Models**: [Wan2.2-Distill-Models](https://huggingface.co/lightx2v/Wan2.2-Distill-Models)
- **Wan2.2 Official Models**: [Wan2.2-Official-Models](https://huggingface.co/lightx2v/Wan2.2-Official-Models) - Contains high noise and low noise base models
- **Base Model (Wan-AI)**: [Wan2.2-I2V-A14B](https://huggingface.co/Wan-AI/Wan2.2-I2V-A14B)

## 🀝 Community & Support

- **GitHub Issues**: https://github.com/ModelTC/LightX2V/issues
- **HuggingFace**: https://huggingface.co/lightx2v/Wan2.2-Distill-Loras
- **LightX2V Homepage**: https://github.com/ModelTC/LightX2V

If you find this project helpful, please give us a ⭐ on [GitHub](https://github.com/ModelTC/LightX2V)