--- library_name: transformers license: mit datasets: - ethicalabs/Kurtis-E1-SFT language: - en base_model: ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct pipeline_tag: text-generation tags: - mlx --- # linroger023/Kurtis-E1.1-Qwen2.5-3B-Instruct-mlx-8Bit The Model [linroger023/Kurtis-E1.1-Qwen2.5-3B-Instruct-mlx-8Bit](https://huggingface.co/linroger023/Kurtis-E1.1-Qwen2.5-3B-Instruct-mlx-8Bit) was converted to MLX format from [ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct](https://huggingface.co/ethicalabs/Kurtis-E1.1-Qwen2.5-3B-Instruct) using mlx-lm version **0.22.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("linroger023/Kurtis-E1.1-Qwen2.5-3B-Instruct-mlx-8Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```