Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -18,3 +18,37 @@ NVFP4-quantized version of `Qwen/Qwen3-0.6B` produced with [llmcompressor](https | |
| 18 | 
             
            - Quantization scheme: NVFP4 (linear layers, `lm_head` excluded)
         | 
| 19 | 
             
            - Calibration samples: 512
         | 
| 20 | 
             
            - Max sequence length during calibration: 2048
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 18 | 
             
            - Quantization scheme: NVFP4 (linear layers, `lm_head` excluded)
         | 
| 19 | 
             
            - Calibration samples: 512
         | 
| 20 | 
             
            - Max sequence length during calibration: 2048
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            ## Deployment
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            ### Use with vLLM
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ```python
         | 
| 29 | 
            +
            from vllm import LLM, SamplingParams
         | 
| 30 | 
            +
            from transformers import AutoTokenizer
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            model_id = "llmat/Qwen3-0.6B-NVFP4"
         | 
| 33 | 
            +
            number_gpus = 1
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_id)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            messages = [
         | 
| 40 | 
            +
                {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
         | 
| 41 | 
            +
                {"role": "user", "content": "Who are you?"},
         | 
| 42 | 
            +
            ]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            outputs = llm.generate(prompts, sampling_params)
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            generated_text = outputs[0].outputs[0].text
         | 
| 51 | 
            +
            print(generated_text)
         | 
| 52 | 
            +
            ```
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
         |