Upload 3 files
Browse files- .gitattributes +1 -0
- README.md +59 -0
- config.json +15 -0
- slim-sql.gguf +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
slim-sql.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,62 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# Model Card for Model ID
|
| 6 |
+
|
| 7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 8 |
+
|
| 9 |
+
**slim-sentiment-tool** is part of the SLIM ("Structured Language Instruction Model") model series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
|
| 10 |
+
|
| 11 |
+
slim-sentiment-tool is a 4_K_M quantized GGUF version of slim-sentiment-tool, providing a fast, small inference implementation.
|
| 12 |
+
|
| 13 |
+
Load in your favorite GGUF inference engine, or try with llmware as follows:
|
| 14 |
+
|
| 15 |
+
from llmware.models import ModelCatalog
|
| 16 |
+
|
| 17 |
+
sentiment_tool = ModelCatalog().load_model("llmware/slim-sentiment-tool")
|
| 18 |
+
response = sentiment_tool.function_call(text_sample, params=["sentiment"], function="classify")
|
| 19 |
+
|
| 20 |
+
Slim models can also be loaded even more simply as part of LLMfx calls:
|
| 21 |
+
|
| 22 |
+
from llmware.agents import LLMfx
|
| 23 |
+
|
| 24 |
+
llm_fx = LLMfx()
|
| 25 |
+
llm_fx.load_tool("sentiment")
|
| 26 |
+
response = llm_fx.sentiment(text)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
### Model Description
|
| 30 |
+
|
| 31 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 32 |
+
|
| 33 |
+
- **Developed by:** llmware
|
| 34 |
+
- **Model type:** GGUF
|
| 35 |
+
- **Language(s) (NLP):** English
|
| 36 |
+
- **License:** Apache 2.0
|
| 37 |
+
- **Quantized from model:** llmware/slim-sentiment (finetuned tiny llama)
|
| 38 |
+
|
| 39 |
+
## Uses
|
| 40 |
+
|
| 41 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 42 |
+
|
| 43 |
+
The intended use of SLIM models is to re-imagine traditional 'hard-coded' classifiers through the use of function calls.
|
| 44 |
+
|
| 45 |
+
Example:
|
| 46 |
+
|
| 47 |
+
text = "The stock market declined yesterday as investors worried increasingly about the slowing economy."
|
| 48 |
+
|
| 49 |
+
model generation - {"sentiment": ["negative"]}
|
| 50 |
+
|
| 51 |
+
keys = "sentiment"
|
| 52 |
+
|
| 53 |
+
All of the SLIM models use a novel prompt instruction structured as follows:
|
| 54 |
+
|
| 55 |
+
"<human> " + text + "<classify> " + keys + "</classify>" + "/n<bot>: "
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
## Model Card Contact
|
| 59 |
+
|
| 60 |
+
Darren Oberst & llmware team
|
| 61 |
+
|
| 62 |
+
|
config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_name": "slim-sentiment-tool",
|
| 3 |
+
"quantization": "4Q_K_M GGUF",
|
| 4 |
+
"model_base": "tiny-llama",
|
| 5 |
+
"model_type": "llama",
|
| 6 |
+
"parameters": "1.1 billion",
|
| 7 |
+
"description": "slim-sentiment is a function-calling model, fine-tuned to output structured json dictionaries generally with one key 'sentiment', and a value consisting of a list, usually with a single string value - positive, negative or neutral",
|
| 8 |
+
"prompt_wrapper": "human_bot",
|
| 9 |
+
"prompt_format": "<human> {context_passage} <classify> sentiment </classify>\n<bot>:",
|
| 10 |
+
"output_format": "{'sentiment': ['positive']}",
|
| 11 |
+
"primary_keys": ["sentiment"],
|
| 12 |
+
"output_values": ["positive", "negative", "neutral"],
|
| 13 |
+
"publisher": "llmware",
|
| 14 |
+
"release_date": "february 2024"
|
| 15 |
+
}
|
slim-sql.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:de96e2610cbc05a78bc3d955c30c59f81e24f82105197a2f1db4f448feb6f4d3
|
| 3 |
+
size 668787680
|