Delete tokenization_ernie4_5.py
Browse files- tokenization_ernie4_5.py +0 -214
tokenization_ernie4_5.py
DELETED
|
@@ -1,214 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import os
|
| 16 |
-
from shutil import copyfile
|
| 17 |
-
from typing import List, Optional, Tuple
|
| 18 |
-
import sentencepiece as spm
|
| 19 |
-
|
| 20 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
| 21 |
-
from transformers.utils import logging
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
logger = logging.get_logger(__name__)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class Ernie4_5_Tokenizer(PreTrainedTokenizer):
|
| 28 |
-
|
| 29 |
-
vocab_files_names = {
|
| 30 |
-
"vocab_file": "tokenizer.model",
|
| 31 |
-
}
|
| 32 |
-
# Model input names expected by the tokenizer
|
| 33 |
-
model_input_names = ["input_ids", "position_ids", "attention_mask", "labels"]
|
| 34 |
-
# Padding side (where to add padding tokens)
|
| 35 |
-
padding_side = "right"
|
| 36 |
-
|
| 37 |
-
def __init__(
|
| 38 |
-
self,
|
| 39 |
-
vocab_file,
|
| 40 |
-
bos_token="<s>",
|
| 41 |
-
cls_token="<cls>",
|
| 42 |
-
eos_token="</s>",
|
| 43 |
-
mask_token="<mask:0>",
|
| 44 |
-
pad_token="<pad>",
|
| 45 |
-
sep_token="<sep>",
|
| 46 |
-
unk_token="<unk>",
|
| 47 |
-
additional_special_tokens=None,
|
| 48 |
-
verbose=False,
|
| 49 |
-
**kwargs,
|
| 50 |
-
):
|
| 51 |
-
"""
|
| 52 |
-
Initialize the ERNIE tokenizer.
|
| 53 |
-
|
| 54 |
-
Args:
|
| 55 |
-
vocab_file (str): Path to the SentencePiece model file.
|
| 56 |
-
bos_token (str, optional): Beginning of sentence token. Defaults to "<s>".
|
| 57 |
-
cls_token (str, optional): Classification token. Defaults to "<cls>".
|
| 58 |
-
eos_token (str, optional): End of sentence token. Defaults to "</s>".
|
| 59 |
-
mask_token (str, optional): Mask token. Defaults to "<mask:0>".
|
| 60 |
-
pad_token (str, optional): Padding token. Defaults to "<pad>".
|
| 61 |
-
sep_token (str, optional): Separator token. Defaults to "<sep>".
|
| 62 |
-
unk_token (str, optional): Unknown token. Defaults to "<unk>".
|
| 63 |
-
additional_special_tokens (List[str], optional): Additional special tokens.
|
| 64 |
-
Defaults to ["<mask:1>", "<mask:7>"].
|
| 65 |
-
verbose (bool, optional): Whether to print detailed logs or progress information during execution.
|
| 66 |
-
**kwargs: Additional keyword arguments passed to the parent class.
|
| 67 |
-
"""
|
| 68 |
-
|
| 69 |
-
self.vocab_file = vocab_file
|
| 70 |
-
self.sp_model = spm.SentencePieceProcessor()
|
| 71 |
-
self.sp_model.Load(vocab_file)
|
| 72 |
-
|
| 73 |
-
if additional_special_tokens is None:
|
| 74 |
-
additional_special_tokens = ["<mask:1>", "<mask:7>"]
|
| 75 |
-
super().__init__(
|
| 76 |
-
bos_token=bos_token,
|
| 77 |
-
cls_token=cls_token,
|
| 78 |
-
eos_token=eos_token,
|
| 79 |
-
mask_token=mask_token,
|
| 80 |
-
pad_token=pad_token,
|
| 81 |
-
sep_token=sep_token,
|
| 82 |
-
unk_token=unk_token,
|
| 83 |
-
additional_special_tokens=additional_special_tokens,
|
| 84 |
-
verbose=verbose,
|
| 85 |
-
**kwargs,
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
@property
|
| 89 |
-
def vocab_size(self):
|
| 90 |
-
"""Returns the size of the vocabulary.
|
| 91 |
-
|
| 92 |
-
Returns:
|
| 93 |
-
int: The number of tokens in the vocabulary.
|
| 94 |
-
"""
|
| 95 |
-
return self.sp_model.vocab_size()
|
| 96 |
-
|
| 97 |
-
def get_vocab(self):
|
| 98 |
-
"""Get the vocabulary as a dictionary mapping tokens to their IDs.
|
| 99 |
-
|
| 100 |
-
Returns:
|
| 101 |
-
dict: A dictionary mapping tokens to their corresponding IDs.
|
| 102 |
-
"""
|
| 103 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 104 |
-
vocab.update(self.added_tokens_encoder)
|
| 105 |
-
return vocab
|
| 106 |
-
|
| 107 |
-
def _tokenize(self, text):
|
| 108 |
-
"""Tokenize text using SentencePiece.
|
| 109 |
-
|
| 110 |
-
Args:
|
| 111 |
-
text (str): The text to tokenize.
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
list: A list of tokens.
|
| 115 |
-
"""
|
| 116 |
-
return self.sp_model.encode_as_pieces(text)
|
| 117 |
-
|
| 118 |
-
def _convert_token_to_id(self, token):
|
| 119 |
-
"""Convert a token (str) to an ID using the vocabulary.
|
| 120 |
-
|
| 121 |
-
Args:
|
| 122 |
-
token (str): The token to convert.
|
| 123 |
-
|
| 124 |
-
Returns:
|
| 125 |
-
int: The corresponding token ID.
|
| 126 |
-
"""
|
| 127 |
-
return self.sp_model.piece_to_id(token)
|
| 128 |
-
|
| 129 |
-
def _convert_id_to_token(self, id):
|
| 130 |
-
"""Convert an ID to a token (str) using the vocabulary.
|
| 131 |
-
|
| 132 |
-
Args:
|
| 133 |
-
id (int): The token ID to convert.
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
str: The corresponding token.
|
| 137 |
-
"""
|
| 138 |
-
if id >= self.vocab_size:
|
| 139 |
-
return self.unk_token
|
| 140 |
-
else:
|
| 141 |
-
return self.sp_model.id_to_piece(id)
|
| 142 |
-
|
| 143 |
-
def convert_tokens_to_string(self, tokens):
|
| 144 |
-
"""Convert a sequence of tokens back to a single string.
|
| 145 |
-
|
| 146 |
-
Args:
|
| 147 |
-
tokens (List[str]): A list of tokens to convert.
|
| 148 |
-
|
| 149 |
-
Returns:
|
| 150 |
-
str: The reconstructed string.
|
| 151 |
-
"""
|
| 152 |
-
current_sub_tokens = []
|
| 153 |
-
out_string = ""
|
| 154 |
-
for token in tokens:
|
| 155 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
| 156 |
-
if token in self.all_special_tokens:
|
| 157 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 158 |
-
current_sub_tokens = []
|
| 159 |
-
else:
|
| 160 |
-
current_sub_tokens.append(token)
|
| 161 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
| 162 |
-
return out_string
|
| 163 |
-
|
| 164 |
-
def prepare_for_model(self, *args, **kwargs):
|
| 165 |
-
if "add_special_tokens" in kwargs:
|
| 166 |
-
kwargs.pop("add_special_tokens")
|
| 167 |
-
return super().prepare_for_model(*args, **kwargs)
|
| 168 |
-
|
| 169 |
-
def save_vocabulary(
|
| 170 |
-
self, save_directory, filename_prefix: Optional[str] = None
|
| 171 |
-
) -> Tuple[str]:
|
| 172 |
-
"""
|
| 173 |
-
Save the vocabulary and special tokens file to a directory.
|
| 174 |
-
|
| 175 |
-
Args:
|
| 176 |
-
save_directory (str): The directory in which to save the vocabulary.
|
| 177 |
-
filename_prefix (Optional[str]): Optional prefix for the saved filename.
|
| 178 |
-
|
| 179 |
-
Returns:
|
| 180 |
-
Tuple[str]: Paths to the files saved.
|
| 181 |
-
|
| 182 |
-
Raises:
|
| 183 |
-
ValueError: If the save_directory is not a valid directory.
|
| 184 |
-
"""
|
| 185 |
-
if not os.path.isdir(save_directory):
|
| 186 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 187 |
-
return
|
| 188 |
-
out_vocab_file = os.path.join(
|
| 189 |
-
save_directory,
|
| 190 |
-
(filename_prefix + "-" if filename_prefix else "")
|
| 191 |
-
+ self.vocab_files_names["vocab_file"],
|
| 192 |
-
)
|
| 193 |
-
|
| 194 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 195 |
-
out_vocab_file
|
| 196 |
-
) and os.path.isfile(self.vocab_file):
|
| 197 |
-
copyfile(self.vocab_file, out_vocab_file)
|
| 198 |
-
elif not os.path.isfile(self.vocab_file):
|
| 199 |
-
with open(out_vocab_file, "wb") as fi:
|
| 200 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 201 |
-
fi.write(content_spiece_model)
|
| 202 |
-
|
| 203 |
-
return (out_vocab_file,)
|
| 204 |
-
|
| 205 |
-
def _decode(self, *args, **kwargs):
|
| 206 |
-
kwargs.pop("clean_up_tokenization_spaces", None)
|
| 207 |
-
kwargs.pop("spaces_between_special_tokens", None)
|
| 208 |
-
return super()._decode(
|
| 209 |
-
*args,
|
| 210 |
-
**kwargs,
|
| 211 |
-
clean_up_tokenization_spaces=False,
|
| 212 |
-
spaces_between_special_tokens=False,
|
| 213 |
-
)
|
| 214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|