fixes and optimizations
Browse files- modeling_gptbert.py +172 -292
modeling_gptbert.py
CHANGED
|
@@ -3,14 +3,13 @@ from __future__ import annotations
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
from torch.nn import functional as F
|
| 6 |
-
from torch import _softmax_backward_data as _softmax_backward_data
|
| 7 |
|
| 8 |
from functools import partial, lru_cache
|
| 9 |
|
| 10 |
from .configuration_gptbert import GptBertConfig
|
| 11 |
from transformers.modeling_utils import PreTrainedModel
|
| 12 |
from transformers.activations import gelu_new
|
| 13 |
-
from transformers.utils import is_flash_attn_2_available
|
| 14 |
from transformers.modeling_outputs import (
|
| 15 |
MaskedLMOutput,
|
| 16 |
MultipleChoiceModelOutput,
|
|
@@ -23,6 +22,9 @@ from transformers.modeling_outputs import (
|
|
| 23 |
import math
|
| 24 |
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
# Workaround for transformers < 4.36.0 check_imports issue
|
| 27 |
# See: https://github.com/huggingface/transformers/issues/28459
|
| 28 |
try:
|
|
@@ -31,13 +33,15 @@ try:
|
|
| 31 |
from flash_attn.layers.rotary import RotaryEmbedding
|
| 32 |
from flash_attn.ops.triton.rotary import apply_rotary
|
| 33 |
else:
|
| 34 |
-
flash_attn_varlen_qkvpacked_func = None
|
| 35 |
-
|
| 36 |
-
|
|
|
|
| 37 |
except ImportError:
|
| 38 |
-
flash_attn_varlen_qkvpacked_func = None
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
|
@@ -89,34 +93,6 @@ class CastedLinearIn(nn.Linear):
|
|
| 89 |
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 90 |
|
| 91 |
|
| 92 |
-
class CastedLinearOut(nn.Linear):
|
| 93 |
-
def __init__(self, in_features, out_features, bias):
|
| 94 |
-
super().__init__(in_features, out_features, bias=bias)
|
| 95 |
-
self.scale = nn.Parameter(torch.ones(out_features))
|
| 96 |
-
|
| 97 |
-
def forward(self, x):
|
| 98 |
-
return F.linear(x, (self.scale.unsqueeze(1) * self.weight).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
class MultiCastedLinearOrtho(nn.Module):
|
| 102 |
-
def __init__(self, in_features, out_features, bias):
|
| 103 |
-
super().__init__()
|
| 104 |
-
self.in_features = in_features
|
| 105 |
-
self.out_features = out_features
|
| 106 |
-
|
| 107 |
-
self.weights = nn.ParameterList()
|
| 108 |
-
for out_feature in out_features:
|
| 109 |
-
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 110 |
-
|
| 111 |
-
if bias:
|
| 112 |
-
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 113 |
-
else:
|
| 114 |
-
self.bias = self.register_parameter("bias", None)
|
| 115 |
-
|
| 116 |
-
def forward(self, x):
|
| 117 |
-
return F.linear(x, torch.cat([weight for weight in self.weights], dim=0).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 118 |
-
|
| 119 |
-
|
| 120 |
class MultiCastedLinearOrthoIn(nn.Module):
|
| 121 |
def __init__(self, in_features, out_features, bias):
|
| 122 |
super().__init__()
|
|
@@ -138,77 +114,40 @@ class MultiCastedLinearOrthoIn(nn.Module):
|
|
| 138 |
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 139 |
|
| 140 |
|
| 141 |
-
class MultiCastedLinearOrthoOut(nn.Module):
|
| 142 |
-
def __init__(self, in_features, out_features, bias):
|
| 143 |
-
super().__init__()
|
| 144 |
-
|
| 145 |
-
self.in_features = in_features
|
| 146 |
-
self.out_features = out_features
|
| 147 |
-
|
| 148 |
-
self.weights = nn.ParameterList()
|
| 149 |
-
for out_feature in out_features:
|
| 150 |
-
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 151 |
-
|
| 152 |
-
if bias:
|
| 153 |
-
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 154 |
-
else:
|
| 155 |
-
self.bias = self.register_parameter("bias", None)
|
| 156 |
-
|
| 157 |
-
self.scale = nn.Parameter(torch.ones(sum(out_features)))
|
| 158 |
-
|
| 159 |
-
def forward(self, x):
|
| 160 |
-
return F.linear(x, (self.scale.unsqueeze(1) * torch.cat([weight for weight in self.weights], dim=0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
class GeGLU(nn.Module):
|
| 164 |
def forward(self, x):
|
| 165 |
x, gate = x.chunk(2, dim=-1)
|
| 166 |
return x * gelu_new(gate)
|
| 167 |
|
| 168 |
|
| 169 |
-
class MaskedSoftmax(torch.autograd.Function):
|
| 170 |
-
@staticmethod
|
| 171 |
-
def forward(ctx, x: torch.Tensor, mask: torch.BoolTensor, dim: int):
|
| 172 |
-
ctx.dim = dim
|
| 173 |
-
x.masked_fill_(mask, float('-inf'))
|
| 174 |
-
x = torch.softmax(x, ctx.dim)
|
| 175 |
-
x.masked_fill_(mask, 0.0)
|
| 176 |
-
ctx.save_for_backward(x)
|
| 177 |
-
return x
|
| 178 |
-
|
| 179 |
-
@staticmethod
|
| 180 |
-
def backward(ctx, grad_output: torch.Tensor):
|
| 181 |
-
output, = ctx.saved_tensors
|
| 182 |
-
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, ctx.dim, output.dtype)
|
| 183 |
-
return inputGrad, None, None
|
| 184 |
-
|
| 185 |
-
|
| 186 |
class Encoder(nn.Module):
|
| 187 |
def __init__(self, config: GptBertConfig):
|
| 188 |
super().__init__()
|
| 189 |
-
|
| 190 |
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 191 |
self.short_long_ratio = config.short_long_ratio
|
| 192 |
|
| 193 |
def set_window_length(self, config: GptBertConfig):
|
| 194 |
for i, layer in enumerate(self.layers):
|
| 195 |
-
if (i+1) % self.
|
| 196 |
-
layer.set_window_length(config.
|
| 197 |
else:
|
| 198 |
-
layer.set_window_length(
|
| 199 |
|
| 200 |
-
def forward(self, hidden_layer: torch.Tensor, padding_info):
|
| 201 |
-
|
| 202 |
-
attention_probs = []
|
| 203 |
v1 = None
|
| 204 |
embeddings = hidden_layer
|
| 205 |
|
| 206 |
for layer in self.layers:
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
| 210 |
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
class Layer(nn.Module):
|
|
@@ -227,12 +166,12 @@ class Layer(nn.Module):
|
|
| 227 |
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 228 |
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 229 |
|
| 230 |
-
attention_output, v1
|
| 231 |
mlp_layer = mlp_layer + attention_output
|
| 232 |
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 233 |
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 234 |
|
| 235 |
-
return output, v1
|
| 236 |
|
| 237 |
|
| 238 |
class Embedding(nn.Module):
|
|
@@ -257,21 +196,22 @@ class Embedding(nn.Module):
|
|
| 257 |
return self.dropout(word_embedding)
|
| 258 |
|
| 259 |
|
| 260 |
-
class
|
| 261 |
-
def __init__(self, config: GptBertConfig,
|
| 262 |
super().__init__()
|
| 263 |
|
| 264 |
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 265 |
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
| 266 |
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 267 |
-
self.emb2vocab = CastedLinearIn(config.hidden_size,
|
| 268 |
|
| 269 |
def forward(self, x: torch.Tensor):
|
| 270 |
-
x = self.pre_norm(x)
|
| 271 |
x = self.projection(x)
|
| 272 |
x = gelu_new(x)
|
| 273 |
-
x = self.post_norm(x)
|
| 274 |
-
|
|
|
|
| 275 |
|
| 276 |
|
| 277 |
def flash_attention_forward(
|
|
@@ -354,14 +294,8 @@ class SelfAttention(nn.Module):
|
|
| 354 |
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
| 355 |
|
| 356 |
# Initialize rotary embeddings based on whether FlashAttention is available
|
| 357 |
-
if
|
| 358 |
-
self.rope_embedding = UnpaddedRotaryEmbedding(
|
| 359 |
-
dim=config.d_qk,
|
| 360 |
-
base=theta,
|
| 361 |
-
max_seqlen=config.max_sequence_length,
|
| 362 |
-
device=None,
|
| 363 |
-
dtype=None
|
| 364 |
-
)
|
| 365 |
else:
|
| 366 |
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
| 367 |
|
|
@@ -380,10 +314,10 @@ class SelfAttention(nn.Module):
|
|
| 380 |
"""Create and cache window attention mask."""
|
| 381 |
if self.is_causal:
|
| 382 |
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 383 |
-
mask =
|
| 384 |
else:
|
| 385 |
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 386 |
-
mask =
|
| 387 |
return mask.view(1, 1, query_length, key_length)
|
| 388 |
|
| 389 |
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
@@ -394,26 +328,24 @@ class SelfAttention(nn.Module):
|
|
| 394 |
# Use cached window mask
|
| 395 |
with torch.no_grad():
|
| 396 |
window_mask = self._get_window_mask(query_length, key_length, query.device)
|
| 397 |
-
|
| 398 |
if padding_mask is not None:
|
| 399 |
-
attention_mask = padding_mask
|
| 400 |
else:
|
| 401 |
attention_mask = window_mask
|
| 402 |
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
return value, attention_probabilities.detach()
|
| 413 |
|
| 414 |
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 415 |
# Get original shape info
|
| 416 |
-
if
|
| 417 |
# Unpadded case
|
| 418 |
indices, cu_seqlens, max_seqlen = padding_info
|
| 419 |
total_seqlen = hidden_layer.size(0)
|
|
@@ -421,16 +353,14 @@ class SelfAttention(nn.Module):
|
|
| 421 |
else:
|
| 422 |
# Padded case
|
| 423 |
batch_size, seq_length = hidden_layer.size(0), hidden_layer.size(1)
|
| 424 |
-
hidden_layer = hidden_layer.transpose(0, 1) # [seq_len, batch_size, hidden_size]
|
| 425 |
-
qk_layer = qk_layer.transpose(0, 1)
|
| 426 |
|
| 427 |
-
hidden_layer = self.pre_v_norm(hidden_layer)
|
| 428 |
-
qk_layer = self.pre_qk_norm(qk_layer)
|
| 429 |
|
| 430 |
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 431 |
value = self.v_proj(hidden_layer)
|
| 432 |
|
| 433 |
-
if
|
| 434 |
# Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
|
| 435 |
query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
|
| 436 |
key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
|
|
@@ -445,15 +375,7 @@ class SelfAttention(nn.Module):
|
|
| 445 |
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
| 446 |
|
| 447 |
# Prepare qkv for FlashAttention
|
| 448 |
-
|
| 449 |
-
# Standard MHA
|
| 450 |
-
qkv = torch.stack([query, key, value], dim=1) # (total_seqlen, 3, num_heads, head_dim)
|
| 451 |
-
else:
|
| 452 |
-
# GQA case - need to repeat k,v heads
|
| 453 |
-
num_rep = self.num_attention_heads // self.num_kv_heads
|
| 454 |
-
key = key.repeat_interleave(num_rep, dim=1)
|
| 455 |
-
value = value.repeat_interleave(num_rep, dim=1)
|
| 456 |
-
qkv = torch.stack([query, key, value], dim=1)
|
| 457 |
|
| 458 |
# Determine window size for local attention
|
| 459 |
if self.window_length is not None and self.window_length > 0:
|
|
@@ -478,16 +400,15 @@ class SelfAttention(nn.Module):
|
|
| 478 |
|
| 479 |
# Reshape output back
|
| 480 |
output = output.view(total_seqlen, self.d_v * self.num_attention_heads)
|
| 481 |
-
attention_probabilities = None
|
| 482 |
|
| 483 |
else:
|
| 484 |
# Standard attention path
|
| 485 |
query_length = hidden_layer.size(0)
|
| 486 |
key_length = hidden_layer.size(0)
|
| 487 |
|
| 488 |
-
query = query.reshape(
|
| 489 |
-
key = key.reshape(
|
| 490 |
-
value = value.reshape(
|
| 491 |
|
| 492 |
query = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
|
| 493 |
key = ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
|
@@ -500,27 +421,15 @@ class SelfAttention(nn.Module):
|
|
| 500 |
query = self.rope_embedding(query)
|
| 501 |
key = self.rope_embedding(key)
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
num_rep = self.num_attention_heads // self.num_kv_heads
|
| 506 |
-
key = key.repeat_interleave(num_rep, dim=1)
|
| 507 |
-
value = value.repeat_interleave(num_rep, dim=1)
|
| 508 |
|
| 509 |
-
|
| 510 |
-
output = output.permute(2, 0, 1, 3).flatten(2, 3) # shape: [T, B, H*D]
|
| 511 |
-
|
| 512 |
-
output = self.inter_norm(output)
|
| 513 |
output = self.out_proj(output)
|
|
|
|
| 514 |
|
| 515 |
-
|
| 516 |
-
if is_flash_attn_2_available() and isinstance(padding_info, tuple):
|
| 517 |
-
# Already in correct format for unpadded
|
| 518 |
-
pass
|
| 519 |
-
else:
|
| 520 |
-
# Transpose back to [batch_size, seq_len, hidden_size]
|
| 521 |
-
output = output.transpose(0, 1)
|
| 522 |
|
| 523 |
-
return self.dropout(output), v1, attention_probabilities
|
| 524 |
|
| 525 |
class FeedForward(nn.Module):
|
| 526 |
def __init__(self, config: GptBertConfig):
|
|
@@ -533,12 +442,13 @@ class FeedForward(nn.Module):
|
|
| 533 |
self.dropout = nn.Dropout(config.feed_forward_dropout_p)
|
| 534 |
|
| 535 |
def forward(self, x: torch.Tensor):
|
| 536 |
-
x = self.pre_norm(x)
|
| 537 |
x = self.up_proj(x)
|
| 538 |
x = self.activation(x)
|
| 539 |
x = self.inter_norm(x.float()).type_as(x)
|
| 540 |
x = self.down_proj(x)
|
| 541 |
-
|
|
|
|
| 542 |
|
| 543 |
|
| 544 |
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
|
@@ -596,23 +506,17 @@ class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
|
| 596 |
return do, None, None, None, None, None, None
|
| 597 |
|
| 598 |
|
| 599 |
-
def apply_rotary_unpadded(
|
| 600 |
-
qkv,
|
| 601 |
-
cos,
|
| 602 |
-
sin,
|
| 603 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 604 |
-
max_seqlen: Optional[int] = None,
|
| 605 |
-
):
|
| 606 |
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
| 607 |
|
| 608 |
|
| 609 |
class UnpaddedRotaryEmbedding(RotaryEmbedding):
|
| 610 |
-
def __init__(self, dim: int, base: float = 10000.0, max_seqlen: Optional[int] = None
|
| 611 |
-
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=
|
| 612 |
self.max_seqlen = max_seqlen
|
| 613 |
|
| 614 |
if max_seqlen is not None and device is not None and dtype is not None:
|
| 615 |
-
self._update_cos_sin_cache(max_seqlen, device=device, dtype=
|
| 616 |
|
| 617 |
def forward(self, qkv: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen: Optional[int] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 618 |
if max_seqlen is not None:
|
|
@@ -696,7 +600,7 @@ class GptBertPreTrainedModel(PreTrainedModel):
|
|
| 696 |
def _init_weights(self, module):
|
| 697 |
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 698 |
|
| 699 |
-
if isinstance(module, nn.Linear):
|
| 700 |
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 701 |
if module.bias is not None:
|
| 702 |
module.bias.data.zero_()
|
|
@@ -706,6 +610,33 @@ class GptBertPreTrainedModel(PreTrainedModel):
|
|
| 706 |
module.bias.data.zero_()
|
| 707 |
module.weight.data.fill_(1.0)
|
| 708 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
|
| 710 |
class GptBertModel(GptBertPreTrainedModel):
|
| 711 |
def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
|
|
@@ -715,8 +646,10 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 715 |
|
| 716 |
self.embedding = Embedding(config)
|
| 717 |
self.encoder = Encoder(config)
|
| 718 |
-
self.classifier =
|
| 719 |
self.set_window_length(config)
|
|
|
|
|
|
|
| 720 |
|
| 721 |
def set_window_length(self, config) -> None:
|
| 722 |
self.encoder.set_window_length(config)
|
|
@@ -732,7 +665,7 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 732 |
input_ids: Optional[torch.Tensor] = None,
|
| 733 |
attention_mask: Optional[torch.Tensor] = None,
|
| 734 |
output_hidden_states: Optional[bool] = None
|
| 735 |
-
)
|
| 736 |
if input_ids is not None:
|
| 737 |
input_shape = input_ids.size()
|
| 738 |
else:
|
|
@@ -741,39 +674,50 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 741 |
batch_size, seq_length = input_shape
|
| 742 |
device = input_ids.device
|
| 743 |
|
| 744 |
-
if
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 750 |
padding_info = (indices, cu_seqlens, max_seqlen_in_batch)
|
| 751 |
else:
|
| 752 |
-
if attention_mask
|
| 753 |
-
attention_mask =
|
| 754 |
-
|
| 755 |
-
attention_mask =
|
| 756 |
-
if len(attention_mask.size()) == 2:
|
| 757 |
-
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 758 |
-
elif len(attention_mask.size()) == 3:
|
| 759 |
-
attention_mask = attention_mask.unsqueeze(1)
|
| 760 |
-
if self.config.is_decoder:
|
| 761 |
-
attention_mask = attention_mask | torch.triu(torch.ones(seq_length, seq_length, dtype=torch.bool, device=device), 1).unsqueeze(0).unsqueeze(1)
|
| 762 |
padding_info = attention_mask
|
| 763 |
|
| 764 |
static_embeddings = self.embedding(input_ids)
|
| 765 |
-
|
| 766 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 767 |
|
| 768 |
# Pad output if using FlashAttention
|
| 769 |
-
if
|
| 770 |
last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
|
| 771 |
if output_hidden_states:
|
| 772 |
contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
|
| 773 |
else:
|
| 774 |
contextualized_embeddings = None
|
| 775 |
|
| 776 |
-
return last_layer, contextualized_embeddings
|
| 777 |
|
| 778 |
def forward(
|
| 779 |
self,
|
|
@@ -786,26 +730,22 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 786 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 787 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 788 |
|
| 789 |
-
sequence_output, contextualized_embeddings
|
| 790 |
-
input_ids, attention_mask, output_hidden_states
|
| 791 |
-
)
|
| 792 |
|
| 793 |
if not return_dict:
|
| 794 |
return (
|
| 795 |
sequence_output,
|
| 796 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 797 |
-
*([attention_probs] if output_attentions else [])
|
| 798 |
)
|
| 799 |
|
| 800 |
return BaseModelOutput(
|
| 801 |
last_hidden_state=sequence_output,
|
| 802 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 803 |
-
attentions=attention_probs if output_attentions else None
|
| 804 |
)
|
| 805 |
|
| 806 |
|
| 807 |
class GptBertForMaskedLM(GptBertModel):
|
| 808 |
-
|
| 809 |
|
| 810 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 811 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
|
@@ -820,17 +760,14 @@ class GptBertForMaskedLM(GptBertModel):
|
|
| 820 |
self,
|
| 821 |
input_ids: Optional[torch.Tensor] = None,
|
| 822 |
attention_mask: Optional[torch.Tensor] = None,
|
| 823 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 824 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 825 |
output_hidden_states: Optional[bool] = None,
|
| 826 |
-
output_attentions: Optional[bool] = None,
|
| 827 |
return_dict: Optional[bool] = None,
|
| 828 |
labels: Optional[torch.LongTensor] = None,
|
| 829 |
**kwargs
|
| 830 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 831 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 832 |
|
| 833 |
-
sequence_output, contextualized_embeddings
|
| 834 |
subword_prediction = self.classifier(sequence_output)
|
| 835 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 836 |
|
|
@@ -847,60 +784,19 @@ class GptBertForMaskedLM(GptBertModel):
|
|
| 847 |
if not return_dict:
|
| 848 |
output = (
|
| 849 |
subword_prediction,
|
| 850 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 851 |
-
*([attention_probs] if output_attentions else [])
|
| 852 |
)
|
| 853 |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 854 |
|
| 855 |
return MaskedLMOutput(
|
| 856 |
loss=masked_lm_loss,
|
| 857 |
logits=subword_prediction,
|
| 858 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 859 |
-
attentions=attention_probs if output_attentions else None
|
| 860 |
)
|
| 861 |
|
| 862 |
|
| 863 |
-
class Classifier(nn.Module):
|
| 864 |
-
def __init__(self, config: GptBertConfig, num_labels: int):
|
| 865 |
-
super().__init__()
|
| 866 |
-
|
| 867 |
-
drop_out = getattr(config, "cls_dropout", None)
|
| 868 |
-
drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
|
| 869 |
-
|
| 870 |
-
self.projection: CastedLinear
|
| 871 |
-
self.emb2vocab: CastedLinear
|
| 872 |
-
self.pre_norm: nn.LayerNorm
|
| 873 |
-
self.post_norm: nn.LayerNorm
|
| 874 |
-
|
| 875 |
-
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 876 |
-
self.projection = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
| 877 |
-
# self.projection = CastedLinear(config.hidden_size, config.hidden_size, bias=False)
|
| 878 |
-
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 879 |
-
self.emb2vocab = nn.Linear(config.hidden_size, num_labels, bias=True)
|
| 880 |
-
# self.emb2vocab = CastedLinear(config.hidden_size, num_labels, bias=True)
|
| 881 |
-
self.dropout = nn.Dropout(drop_out)
|
| 882 |
-
|
| 883 |
-
self.initialize(config.hidden_size, config.intermediate_size, num_labels)
|
| 884 |
-
|
| 885 |
-
@torch.no_grad()
|
| 886 |
-
def initialize(self, hidden_size: int, intermediate_size: int, vocab_size: int) -> None:
|
| 887 |
-
proj_std: float = math.sqrt(2.0 / (hidden_size + intermediate_size))
|
| 888 |
-
|
| 889 |
-
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 890 |
-
nn.init.trunc_normal_(self.emb2vocab.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 891 |
-
self.emb2vocab.bias.zero_()
|
| 892 |
-
|
| 893 |
-
def forward(self, x: torch.Tensor):
|
| 894 |
-
x = self.pre_norm(x)
|
| 895 |
-
x = self.dropout(x)
|
| 896 |
-
x = self.projection(x)
|
| 897 |
-
x = gelu_new(x)
|
| 898 |
-
x = self.post_norm(x)
|
| 899 |
-
return self.emb2vocab(x)
|
| 900 |
-
|
| 901 |
-
|
| 902 |
class GptBertForCausalLM(GptBertModel):
|
| 903 |
-
|
| 904 |
|
| 905 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 906 |
config.is_decoder = True
|
|
@@ -947,29 +843,27 @@ class GptBertForCausalLM(GptBertModel):
|
|
| 947 |
assert past_key_values is None, "past_key_values is not supported for now"
|
| 948 |
assert not use_cache, "use_cache is not supported for now"
|
| 949 |
|
| 950 |
-
sequence_output, contextualized_embeddings
|
| 951 |
subword_prediction = self.classifier(sequence_output)
|
| 952 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 953 |
|
| 954 |
-
|
| 955 |
if labels is not None:
|
| 956 |
labels_flatten = labels[:, 1:].flatten()
|
| 957 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 958 |
-
|
| 959 |
|
| 960 |
if not return_dict:
|
| 961 |
output = (
|
| 962 |
subword_prediction,
|
| 963 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 964 |
-
*([attention_probs] if output_attentions else [])
|
| 965 |
)
|
| 966 |
-
return ((
|
| 967 |
|
| 968 |
return CausalLMOutput(
|
| 969 |
-
loss=
|
| 970 |
logits=subword_prediction,
|
| 971 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 972 |
-
attentions=attention_probs if output_attentions else None
|
| 973 |
)
|
| 974 |
|
| 975 |
def prepare_inputs_for_generation(
|
|
@@ -1025,21 +919,19 @@ class GptBertForCausalLM(GptBertModel):
|
|
| 1025 |
|
| 1026 |
|
| 1027 |
class GptBertForSequenceClassification(GptBertModel):
|
| 1028 |
-
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1029 |
|
| 1030 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1031 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1032 |
|
| 1033 |
self.num_labels = config.num_labels
|
| 1034 |
-
self.
|
|
|
|
| 1035 |
|
| 1036 |
def forward(
|
| 1037 |
self,
|
| 1038 |
input_ids: Optional[torch.Tensor] = None,
|
| 1039 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1040 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1041 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1042 |
-
output_attentions: Optional[bool] = None,
|
| 1043 |
output_hidden_states: Optional[bool] = None,
|
| 1044 |
return_dict: Optional[bool] = None,
|
| 1045 |
labels: Optional[torch.LongTensor] = None,
|
|
@@ -1047,8 +939,8 @@ class GptBertForSequenceClassification(GptBertModel):
|
|
| 1047 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1048 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1049 |
|
| 1050 |
-
sequence_output, contextualized_embeddings
|
| 1051 |
-
logits = self.
|
| 1052 |
|
| 1053 |
loss = None
|
| 1054 |
if labels is not None:
|
|
@@ -1076,35 +968,31 @@ class GptBertForSequenceClassification(GptBertModel):
|
|
| 1076 |
if not return_dict:
|
| 1077 |
output = (
|
| 1078 |
logits,
|
| 1079 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1080 |
-
*([attention_probs] if output_attentions else [])
|
| 1081 |
)
|
| 1082 |
return ((loss,) + output) if loss is not None else output
|
| 1083 |
|
| 1084 |
return SequenceClassifierOutput(
|
| 1085 |
loss=loss,
|
| 1086 |
logits=logits,
|
| 1087 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1088 |
-
attentions=attention_probs if output_attentions else None
|
| 1089 |
)
|
| 1090 |
|
| 1091 |
|
| 1092 |
class GptBertForTokenClassification(GptBertModel):
|
| 1093 |
-
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1094 |
|
| 1095 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1096 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1097 |
|
| 1098 |
self.num_labels = config.num_labels
|
| 1099 |
-
self.
|
|
|
|
| 1100 |
|
| 1101 |
def forward(
|
| 1102 |
self,
|
| 1103 |
input_ids: Optional[torch.Tensor] = None,
|
| 1104 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1105 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1106 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1107 |
-
output_attentions: Optional[bool] = None,
|
| 1108 |
output_hidden_states: Optional[bool] = None,
|
| 1109 |
return_dict: Optional[bool] = None,
|
| 1110 |
labels: Optional[torch.LongTensor] = None,
|
|
@@ -1112,8 +1000,8 @@ class GptBertForTokenClassification(GptBertModel):
|
|
| 1112 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1113 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1114 |
|
| 1115 |
-
sequence_output, contextualized_embeddings
|
| 1116 |
-
logits = self.
|
| 1117 |
|
| 1118 |
loss = None
|
| 1119 |
if labels is not None:
|
|
@@ -1137,21 +1025,19 @@ class GptBertForTokenClassification(GptBertModel):
|
|
| 1137 |
|
| 1138 |
|
| 1139 |
class GptBertForQuestionAnswering(GptBertModel):
|
| 1140 |
-
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1141 |
|
| 1142 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1143 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1144 |
|
| 1145 |
self.num_labels = config.num_labels
|
| 1146 |
-
self.
|
|
|
|
| 1147 |
|
| 1148 |
def forward(
|
| 1149 |
self,
|
| 1150 |
input_ids: Optional[torch.Tensor] = None,
|
| 1151 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1152 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1153 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1154 |
-
output_attentions: Optional[bool] = None,
|
| 1155 |
output_hidden_states: Optional[bool] = None,
|
| 1156 |
return_dict: Optional[bool] = None,
|
| 1157 |
start_positions: Optional[torch.Tensor] = None,
|
|
@@ -1160,8 +1046,8 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1160 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1161 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1162 |
|
| 1163 |
-
sequence_output, contextualized_embeddings
|
| 1164 |
-
logits = self.
|
| 1165 |
|
| 1166 |
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1167 |
start_logits = start_logits.squeeze(-1).contiguous()
|
|
@@ -1189,8 +1075,7 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1189 |
output = (
|
| 1190 |
start_logits,
|
| 1191 |
end_logits,
|
| 1192 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1193 |
-
*([attention_probs] if output_attentions else [])
|
| 1194 |
)
|
| 1195 |
return ((total_loss,) + output) if total_loss is not None else output
|
| 1196 |
|
|
@@ -1198,28 +1083,25 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1198 |
loss=total_loss,
|
| 1199 |
start_logits=start_logits,
|
| 1200 |
end_logits=end_logits,
|
| 1201 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1202 |
-
attentions=attention_probs if output_attentions else None
|
| 1203 |
)
|
| 1204 |
|
| 1205 |
|
| 1206 |
class GptBertForMultipleChoice(GptBertModel):
|
| 1207 |
-
_keys_to_ignore_on_load_unexpected = ["classifier"]
|
| 1208 |
|
| 1209 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1210 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1211 |
|
| 1212 |
self.num_labels = getattr(config, "num_labels", 2)
|
| 1213 |
-
self.
|
|
|
|
| 1214 |
|
| 1215 |
def forward(
|
| 1216 |
self,
|
| 1217 |
input_ids: Optional[torch.Tensor] = None,
|
| 1218 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1219 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1220 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1221 |
labels: Optional[torch.Tensor] = None,
|
| 1222 |
-
output_attentions: Optional[bool] = None,
|
| 1223 |
output_hidden_states: Optional[bool] = None,
|
| 1224 |
return_dict: Optional[bool] = None,
|
| 1225 |
**kwargs
|
|
@@ -1230,8 +1112,8 @@ class GptBertForMultipleChoice(GptBertModel):
|
|
| 1230 |
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 1231 |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1232 |
|
| 1233 |
-
sequence_output, contextualized_embeddings
|
| 1234 |
-
logits = self.
|
| 1235 |
reshaped_logits = logits.view(-1, num_choices)
|
| 1236 |
|
| 1237 |
loss = None
|
|
@@ -1242,14 +1124,12 @@ class GptBertForMultipleChoice(GptBertModel):
|
|
| 1242 |
if not return_dict:
|
| 1243 |
output = (
|
| 1244 |
reshaped_logits,
|
| 1245 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1246 |
-
*([attention_probs] if output_attentions else [])
|
| 1247 |
)
|
| 1248 |
return ((loss,) + output) if loss is not None else output
|
| 1249 |
|
| 1250 |
return MultipleChoiceModelOutput(
|
| 1251 |
loss=loss,
|
| 1252 |
logits=reshaped_logits,
|
| 1253 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1254 |
-
attentions=attention_probs if output_attentions else None
|
| 1255 |
)
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
from torch.nn import functional as F
|
|
|
|
| 6 |
|
| 7 |
from functools import partial, lru_cache
|
| 8 |
|
| 9 |
from .configuration_gptbert import GptBertConfig
|
| 10 |
from transformers.modeling_utils import PreTrainedModel
|
| 11 |
from transformers.activations import gelu_new
|
| 12 |
+
from transformers.utils import is_flash_attn_2_available, logging
|
| 13 |
from transformers.modeling_outputs import (
|
| 14 |
MaskedLMOutput,
|
| 15 |
MultipleChoiceModelOutput,
|
|
|
|
| 22 |
import math
|
| 23 |
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
| 24 |
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
# Workaround for transformers < 4.36.0 check_imports issue
|
| 29 |
# See: https://github.com/huggingface/transformers/issues/28459
|
| 30 |
try:
|
|
|
|
| 33 |
from flash_attn.layers.rotary import RotaryEmbedding
|
| 34 |
from flash_attn.ops.triton.rotary import apply_rotary
|
| 35 |
else:
|
| 36 |
+
flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
|
| 37 |
+
logger.warning_once(
|
| 38 |
+
"NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
|
| 39 |
+
)
|
| 40 |
except ImportError:
|
| 41 |
+
flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
|
| 42 |
+
logger.warning_once(
|
| 43 |
+
"NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
|
| 44 |
+
)
|
| 45 |
|
| 46 |
|
| 47 |
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
|
|
|
| 93 |
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 94 |
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
class MultiCastedLinearOrthoIn(nn.Module):
|
| 97 |
def __init__(self, in_features, out_features, bias):
|
| 98 |
super().__init__()
|
|
|
|
| 114 |
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 115 |
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
class GeGLU(nn.Module):
|
| 118 |
def forward(self, x):
|
| 119 |
x, gate = x.chunk(2, dim=-1)
|
| 120 |
return x * gelu_new(gate)
|
| 121 |
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
class Encoder(nn.Module):
|
| 124 |
def __init__(self, config: GptBertConfig):
|
| 125 |
super().__init__()
|
|
|
|
| 126 |
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 127 |
self.short_long_ratio = config.short_long_ratio
|
| 128 |
|
| 129 |
def set_window_length(self, config: GptBertConfig):
|
| 130 |
for i, layer in enumerate(self.layers):
|
| 131 |
+
if (i + 1) % self.local_global_ratio == 0:
|
| 132 |
+
layer.set_window_length(config.global_window_length)
|
| 133 |
else:
|
| 134 |
+
layer.set_window_length(config.local_window_length)
|
| 135 |
|
| 136 |
+
def forward(self, hidden_layer: torch.Tensor, padding_info, output_hidden_states=False, checkpoint_activations=False):
|
| 137 |
+
hidden_layers = [hidden_layer] if output_hidden_states else None
|
|
|
|
| 138 |
v1 = None
|
| 139 |
embeddings = hidden_layer
|
| 140 |
|
| 141 |
for layer in self.layers:
|
| 142 |
+
if checkpoint_activations:
|
| 143 |
+
hidden_layer, v1 = torch.utils.checkpoint.checkpoint(layers, hidden_layer, embeddings, v1, padding_info, use_reentrant=True)
|
| 144 |
+
else:
|
| 145 |
+
hidden_layer, v1 = layer(hidden_layer, embeddings, v1, padding_info)
|
| 146 |
|
| 147 |
+
if output_hidden_states:
|
| 148 |
+
hidden_layers.append(hidden_layer)
|
| 149 |
+
|
| 150 |
+
return hidden_layer, hidden_layers
|
| 151 |
|
| 152 |
|
| 153 |
class Layer(nn.Module):
|
|
|
|
| 166 |
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 167 |
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 168 |
|
| 169 |
+
attention_output, v1 = self.attention(attention_output, qk_layer, v1, padding_info)
|
| 170 |
mlp_layer = mlp_layer + attention_output
|
| 171 |
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 172 |
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 173 |
|
| 174 |
+
return output, v1
|
| 175 |
|
| 176 |
|
| 177 |
class Embedding(nn.Module):
|
|
|
|
| 196 |
return self.dropout(word_embedding)
|
| 197 |
|
| 198 |
|
| 199 |
+
class Classifier(nn.Module):
|
| 200 |
+
def __init__(self, config: GptBertConfig, n_labels: int):
|
| 201 |
super().__init__()
|
| 202 |
|
| 203 |
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 204 |
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
| 205 |
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 206 |
+
self.emb2vocab = CastedLinearIn(config.hidden_size, n_labels, bias=True)
|
| 207 |
|
| 208 |
def forward(self, x: torch.Tensor):
|
| 209 |
+
x = self.pre_norm(x.float()).type_as(x)
|
| 210 |
x = self.projection(x)
|
| 211 |
x = gelu_new(x)
|
| 212 |
+
x = self.post_norm(x.float()).type_as(x)
|
| 213 |
+
x = self.emb2vocab(x)
|
| 214 |
+
return x
|
| 215 |
|
| 216 |
|
| 217 |
def flash_attention_forward(
|
|
|
|
| 294 |
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
| 295 |
|
| 296 |
# Initialize rotary embeddings based on whether FlashAttention is available
|
| 297 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 298 |
+
self.rope_embedding = UnpaddedRotaryEmbedding(dim=config.d_qk, base=theta, max_seqlen=config.max_sequence_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
else:
|
| 300 |
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
| 301 |
|
|
|
|
| 314 |
"""Create and cache window attention mask."""
|
| 315 |
if self.is_causal:
|
| 316 |
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 317 |
+
mask = mask.tril().triu(diagonal=-self.window_length)
|
| 318 |
else:
|
| 319 |
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 320 |
+
mask = mask.tril(diagonal=self.window_length).triu(diagonal=-self.window_length)
|
| 321 |
return mask.view(1, 1, query_length, key_length)
|
| 322 |
|
| 323 |
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
| 328 |
# Use cached window mask
|
| 329 |
with torch.no_grad():
|
| 330 |
window_mask = self._get_window_mask(query_length, key_length, query.device)
|
|
|
|
| 331 |
if padding_mask is not None:
|
| 332 |
+
attention_mask = padding_mask & window_mask
|
| 333 |
else:
|
| 334 |
attention_mask = window_mask
|
| 335 |
|
| 336 |
+
output = F.scaled_dot_product_attention(
|
| 337 |
+
query=query,
|
| 338 |
+
key=key,
|
| 339 |
+
value=value,
|
| 340 |
+
attn_mask=attention_mask,
|
| 341 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 342 |
+
is_causal=self.is_causal
|
| 343 |
+
)
|
| 344 |
+
return output
|
|
|
|
| 345 |
|
| 346 |
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 347 |
# Get original shape info
|
| 348 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 349 |
# Unpadded case
|
| 350 |
indices, cu_seqlens, max_seqlen = padding_info
|
| 351 |
total_seqlen = hidden_layer.size(0)
|
|
|
|
| 353 |
else:
|
| 354 |
# Padded case
|
| 355 |
batch_size, seq_length = hidden_layer.size(0), hidden_layer.size(1)
|
|
|
|
|
|
|
| 356 |
|
| 357 |
+
hidden_layer = self.pre_v_norm(hidden_layer.float()).type_as(hidden_layer)
|
| 358 |
+
qk_layer = self.pre_qk_norm(qk_layer.float()).type_as(qk_layer)
|
| 359 |
|
| 360 |
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 361 |
value = self.v_proj(hidden_layer)
|
| 362 |
|
| 363 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 364 |
# Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
|
| 365 |
query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
|
| 366 |
key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
|
|
|
|
| 375 |
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
| 376 |
|
| 377 |
# Prepare qkv for FlashAttention
|
| 378 |
+
qkv = torch.stack([query, key, value], dim=1) # (total_seqlen, 3, num_heads, head_dim)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
# Determine window size for local attention
|
| 381 |
if self.window_length is not None and self.window_length > 0:
|
|
|
|
| 400 |
|
| 401 |
# Reshape output back
|
| 402 |
output = output.view(total_seqlen, self.d_v * self.num_attention_heads)
|
|
|
|
| 403 |
|
| 404 |
else:
|
| 405 |
# Standard attention path
|
| 406 |
query_length = hidden_layer.size(0)
|
| 407 |
key_length = hidden_layer.size(0)
|
| 408 |
|
| 409 |
+
query = query.reshape(batch_size, query_length, self.num_attention_heads, self.d_qk).transpose(1, 2)
|
| 410 |
+
key = key.reshape(batch_size, key_length, self.num_kv_heads, self.d_qk).transpose(1, 2)
|
| 411 |
+
value = value.reshape(batch_size, key_length, self.num_kv_heads, self.d_v).transpose(1, 2)
|
| 412 |
|
| 413 |
query = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
|
| 414 |
key = ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
|
|
|
| 421 |
query = self.rope_embedding(query)
|
| 422 |
key = self.rope_embedding(key)
|
| 423 |
|
| 424 |
+
output = self.attention_operation(query, key, value, padding_info)
|
| 425 |
+
output = output.transpose(1, 2).flatten(2, 3) # shape: [B, T, H*D]
|
|
|
|
|
|
|
|
|
|
| 426 |
|
| 427 |
+
output = self.inter_norm(output.float()).type_as(output)
|
|
|
|
|
|
|
|
|
|
| 428 |
output = self.out_proj(output)
|
| 429 |
+
output = self.dropout(output)
|
| 430 |
|
| 431 |
+
return output, v1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 432 |
|
|
|
|
| 433 |
|
| 434 |
class FeedForward(nn.Module):
|
| 435 |
def __init__(self, config: GptBertConfig):
|
|
|
|
| 442 |
self.dropout = nn.Dropout(config.feed_forward_dropout_p)
|
| 443 |
|
| 444 |
def forward(self, x: torch.Tensor):
|
| 445 |
+
x = self.pre_norm(x.float()).type_as(x)
|
| 446 |
x = self.up_proj(x)
|
| 447 |
x = self.activation(x)
|
| 448 |
x = self.inter_norm(x.float()).type_as(x)
|
| 449 |
x = self.down_proj(x)
|
| 450 |
+
x = self.dropout(x)
|
| 451 |
+
return x
|
| 452 |
|
| 453 |
|
| 454 |
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
|
|
|
| 506 |
return do, None, None, None, None, None, None
|
| 507 |
|
| 508 |
|
| 509 |
+
def apply_rotary_unpadded(qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 510 |
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
| 511 |
|
| 512 |
|
| 513 |
class UnpaddedRotaryEmbedding(RotaryEmbedding):
|
| 514 |
+
def __init__(self, dim: int, base: float = 10000.0, max_seqlen: Optional[int] = None):
|
| 515 |
+
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=None, interleaved=False)
|
| 516 |
self.max_seqlen = max_seqlen
|
| 517 |
|
| 518 |
if max_seqlen is not None and device is not None and dtype is not None:
|
| 519 |
+
self._update_cos_sin_cache(max_seqlen, device=device, dtype=None)
|
| 520 |
|
| 521 |
def forward(self, qkv: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen: Optional[int] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 522 |
if max_seqlen is not None:
|
|
|
|
| 600 |
def _init_weights(self, module):
|
| 601 |
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 602 |
|
| 603 |
+
if isinstance(module, nn.Linear) or isinstance(module, CastedLinearIn):
|
| 604 |
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 605 |
if module.bias is not None:
|
| 606 |
module.bias.data.zero_()
|
|
|
|
| 610 |
module.bias.data.zero_()
|
| 611 |
module.weight.data.fill_(1.0)
|
| 612 |
|
| 613 |
+
@classmethod
|
| 614 |
+
def _autoset_attn_implementation(
|
| 615 |
+
cls,
|
| 616 |
+
config,
|
| 617 |
+
torch_dtype: Optional[torch.dtype] = None,
|
| 618 |
+
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
| 619 |
+
check_device_map: bool = True,
|
| 620 |
+
):
|
| 621 |
+
if config._attn_implementation_internal is None:
|
| 622 |
+
config._attn_implementation_internal = "flash_attention_2"
|
| 623 |
+
try:
|
| 624 |
+
return cls._check_and_enable_flash_attn_2(
|
| 625 |
+
config,
|
| 626 |
+
torch_dtype=torch.float16,
|
| 627 |
+
device_map=device_map,
|
| 628 |
+
hard_check_only=False,
|
| 629 |
+
check_device_map=check_device_map,
|
| 630 |
+
)
|
| 631 |
+
except (ValueError, ImportError):
|
| 632 |
+
config._attn_implementation_internal = None
|
| 633 |
+
return super()._autoset_attn_implementation(
|
| 634 |
+
config,
|
| 635 |
+
torch_dtype=torch_dtype,
|
| 636 |
+
device_map=device_map,
|
| 637 |
+
check_device_map=check_device_map,
|
| 638 |
+
)
|
| 639 |
+
|
| 640 |
|
| 641 |
class GptBertModel(GptBertPreTrainedModel):
|
| 642 |
def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
|
|
|
|
| 646 |
|
| 647 |
self.embedding = Embedding(config)
|
| 648 |
self.encoder = Encoder(config)
|
| 649 |
+
self.classifier = Classifier(config, config.vocab_size) if add_mlm_layer else None
|
| 650 |
self.set_window_length(config)
|
| 651 |
+
self.gradient_checkpointing = False
|
| 652 |
+
self.post_init()
|
| 653 |
|
| 654 |
def set_window_length(self, config) -> None:
|
| 655 |
self.encoder.set_window_length(config)
|
|
|
|
| 665 |
input_ids: Optional[torch.Tensor] = None,
|
| 666 |
attention_mask: Optional[torch.Tensor] = None,
|
| 667 |
output_hidden_states: Optional[bool] = None
|
| 668 |
+
):
|
| 669 |
if input_ids is not None:
|
| 670 |
input_shape = input_ids.size()
|
| 671 |
else:
|
|
|
|
| 674 |
batch_size, seq_length = input_shape
|
| 675 |
device = input_ids.device
|
| 676 |
|
| 677 |
+
if attention_mask is None:
|
| 678 |
+
attention_mask = torch.ones(batch_size, seq_length, dtype=torch.bool, device=device)
|
| 679 |
+
else:
|
| 680 |
+
attention_mask = attention_mask.bool()
|
| 681 |
+
|
| 682 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 683 |
+
if len(attention_mask.size()) != 2:
|
| 684 |
+
raise ValueError("Bare `attention_mask` med to dimensjoner støttes nå for FlashAttention.")
|
| 685 |
+
with torch.no_grad():
|
| 686 |
+
input_ids, indices, cu_seqlens, max_seqlen_in_batch = _unpad_input(input_ids, attention_mask)
|
| 687 |
padding_info = (indices, cu_seqlens, max_seqlen_in_batch)
|
| 688 |
else:
|
| 689 |
+
if len(attention_mask.size()) == 2:
|
| 690 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 691 |
+
elif len(attention_mask.size()) == 3:
|
| 692 |
+
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 693 |
padding_info = attention_mask
|
| 694 |
|
| 695 |
static_embeddings = self.embedding(input_ids)
|
| 696 |
+
|
| 697 |
+
original_dtype = static_embeddings.dtype
|
| 698 |
+
if torch.cuda.is_available() and torch.cuda.is_bf16_supported() and static_embeddings.dtype == torch.float32:
|
| 699 |
+
static_embeddings = static_embeddings.bfloat16()
|
| 700 |
+
|
| 701 |
+
last_layer, contextualized_embeddings = self.encoder(
|
| 702 |
+
static_embeddings,
|
| 703 |
+
padding_info,
|
| 704 |
+
output_hidden_states=output_hidden_states,
|
| 705 |
+
checkpoint_activations=self.gradient_checkpointing and self.training
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
last_layer = last_layer.to(original_dtype)
|
| 709 |
+
if output_hidden_states:
|
| 710 |
+
contextualized_embeddings = [layer.to(original_dtype) for layer in contextualized_embeddings]
|
| 711 |
|
| 712 |
# Pad output if using FlashAttention
|
| 713 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 714 |
last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
|
| 715 |
if output_hidden_states:
|
| 716 |
contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
|
| 717 |
else:
|
| 718 |
contextualized_embeddings = None
|
| 719 |
|
| 720 |
+
return last_layer, contextualized_embeddings
|
| 721 |
|
| 722 |
def forward(
|
| 723 |
self,
|
|
|
|
| 730 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 731 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 732 |
|
| 733 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
|
|
|
|
|
|
| 734 |
|
| 735 |
if not return_dict:
|
| 736 |
return (
|
| 737 |
sequence_output,
|
| 738 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 739 |
)
|
| 740 |
|
| 741 |
return BaseModelOutput(
|
| 742 |
last_hidden_state=sequence_output,
|
| 743 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 744 |
)
|
| 745 |
|
| 746 |
|
| 747 |
class GptBertForMaskedLM(GptBertModel):
|
| 748 |
+
_tied_weights_keys = ["classifier.emb2vocab.weight"]
|
| 749 |
|
| 750 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 751 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
|
|
|
| 760 |
self,
|
| 761 |
input_ids: Optional[torch.Tensor] = None,
|
| 762 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 763 |
output_hidden_states: Optional[bool] = None,
|
|
|
|
| 764 |
return_dict: Optional[bool] = None,
|
| 765 |
labels: Optional[torch.LongTensor] = None,
|
| 766 |
**kwargs
|
| 767 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 768 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 769 |
|
| 770 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 771 |
subword_prediction = self.classifier(sequence_output)
|
| 772 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 773 |
|
|
|
|
| 784 |
if not return_dict:
|
| 785 |
output = (
|
| 786 |
subword_prediction,
|
| 787 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 788 |
)
|
| 789 |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 790 |
|
| 791 |
return MaskedLMOutput(
|
| 792 |
loss=masked_lm_loss,
|
| 793 |
logits=subword_prediction,
|
| 794 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 795 |
)
|
| 796 |
|
| 797 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
class GptBertForCausalLM(GptBertModel):
|
| 799 |
+
_tied_weights_keys = ["classifier.emb2vocab.weight"]
|
| 800 |
|
| 801 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 802 |
config.is_decoder = True
|
|
|
|
| 843 |
assert past_key_values is None, "past_key_values is not supported for now"
|
| 844 |
assert not use_cache, "use_cache is not supported for now"
|
| 845 |
|
| 846 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 847 |
subword_prediction = self.classifier(sequence_output)
|
| 848 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 849 |
|
| 850 |
+
causal_lm_loss = None
|
| 851 |
if labels is not None:
|
| 852 |
labels_flatten = labels[:, 1:].flatten()
|
| 853 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 854 |
+
causal_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 855 |
|
| 856 |
if not return_dict:
|
| 857 |
output = (
|
| 858 |
subword_prediction,
|
| 859 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 860 |
)
|
| 861 |
+
return ((causal_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 862 |
|
| 863 |
return CausalLMOutput(
|
| 864 |
+
loss=causal_lm_loss,
|
| 865 |
logits=subword_prediction,
|
| 866 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 867 |
)
|
| 868 |
|
| 869 |
def prepare_inputs_for_generation(
|
|
|
|
| 919 |
|
| 920 |
|
| 921 |
class GptBertForSequenceClassification(GptBertModel):
|
| 922 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab"]
|
| 923 |
|
| 924 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 925 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 926 |
|
| 927 |
self.num_labels = config.num_labels
|
| 928 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 929 |
+
self.post_init()
|
| 930 |
|
| 931 |
def forward(
|
| 932 |
self,
|
| 933 |
input_ids: Optional[torch.Tensor] = None,
|
| 934 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 935 |
output_hidden_states: Optional[bool] = None,
|
| 936 |
return_dict: Optional[bool] = None,
|
| 937 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 939 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 940 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 941 |
|
| 942 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 943 |
+
logits = self.classifier(sequence_output[:, 0, :])
|
| 944 |
|
| 945 |
loss = None
|
| 946 |
if labels is not None:
|
|
|
|
| 968 |
if not return_dict:
|
| 969 |
output = (
|
| 970 |
logits,
|
| 971 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 972 |
)
|
| 973 |
return ((loss,) + output) if loss is not None else output
|
| 974 |
|
| 975 |
return SequenceClassifierOutput(
|
| 976 |
loss=loss,
|
| 977 |
logits=logits,
|
| 978 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 979 |
)
|
| 980 |
|
| 981 |
|
| 982 |
class GptBertForTokenClassification(GptBertModel):
|
| 983 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab"]
|
| 984 |
|
| 985 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 986 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 987 |
|
| 988 |
self.num_labels = config.num_labels
|
| 989 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 990 |
+
self.post_init()
|
| 991 |
|
| 992 |
def forward(
|
| 993 |
self,
|
| 994 |
input_ids: Optional[torch.Tensor] = None,
|
| 995 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 996 |
output_hidden_states: Optional[bool] = None,
|
| 997 |
return_dict: Optional[bool] = None,
|
| 998 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 1000 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1001 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1002 |
|
| 1003 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 1004 |
+
logits = self.classifier(sequence_output)
|
| 1005 |
|
| 1006 |
loss = None
|
| 1007 |
if labels is not None:
|
|
|
|
| 1025 |
|
| 1026 |
|
| 1027 |
class GptBertForQuestionAnswering(GptBertModel):
|
| 1028 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab"]
|
| 1029 |
|
| 1030 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1031 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1032 |
|
| 1033 |
self.num_labels = config.num_labels
|
| 1034 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 1035 |
+
self.post_init()
|
| 1036 |
|
| 1037 |
def forward(
|
| 1038 |
self,
|
| 1039 |
input_ids: Optional[torch.Tensor] = None,
|
| 1040 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 1041 |
output_hidden_states: Optional[bool] = None,
|
| 1042 |
return_dict: Optional[bool] = None,
|
| 1043 |
start_positions: Optional[torch.Tensor] = None,
|
|
|
|
| 1046 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1047 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1048 |
|
| 1049 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 1050 |
+
logits = self.classifier(sequence_output)
|
| 1051 |
|
| 1052 |
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1053 |
start_logits = start_logits.squeeze(-1).contiguous()
|
|
|
|
| 1075 |
output = (
|
| 1076 |
start_logits,
|
| 1077 |
end_logits,
|
| 1078 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 1079 |
)
|
| 1080 |
return ((total_loss,) + output) if total_loss is not None else output
|
| 1081 |
|
|
|
|
| 1083 |
loss=total_loss,
|
| 1084 |
start_logits=start_logits,
|
| 1085 |
end_logits=end_logits,
|
| 1086 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 1087 |
)
|
| 1088 |
|
| 1089 |
|
| 1090 |
class GptBertForMultipleChoice(GptBertModel):
|
| 1091 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab"]
|
| 1092 |
|
| 1093 |
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1094 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1095 |
|
| 1096 |
self.num_labels = getattr(config, "num_labels", 2)
|
| 1097 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 1098 |
+
self.post_init()
|
| 1099 |
|
| 1100 |
def forward(
|
| 1101 |
self,
|
| 1102 |
input_ids: Optional[torch.Tensor] = None,
|
| 1103 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 1104 |
labels: Optional[torch.Tensor] = None,
|
|
|
|
| 1105 |
output_hidden_states: Optional[bool] = None,
|
| 1106 |
return_dict: Optional[bool] = None,
|
| 1107 |
**kwargs
|
|
|
|
| 1112 |
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 1113 |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1114 |
|
| 1115 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask, output_hidden_states)
|
| 1116 |
+
logits = self.classifier(sequence_output)
|
| 1117 |
reshaped_logits = logits.view(-1, num_choices)
|
| 1118 |
|
| 1119 |
loss = None
|
|
|
|
| 1124 |
if not return_dict:
|
| 1125 |
output = (
|
| 1126 |
reshaped_logits,
|
| 1127 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 1128 |
)
|
| 1129 |
return ((loss,) + output) if loss is not None else output
|
| 1130 |
|
| 1131 |
return MultipleChoiceModelOutput(
|
| 1132 |
loss=loss,
|
| 1133 |
logits=reshaped_logits,
|
| 1134 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 1135 |
)
|