Update modeling_gptbert.py
Browse files- modeling_gptbert.py +148 -175
modeling_gptbert.py
CHANGED
|
@@ -121,60 +121,6 @@ class GeGLU(nn.Module):
|
|
| 121 |
return x * gelu_new(gate)
|
| 122 |
|
| 123 |
|
| 124 |
-
class Encoder(nn.Module):
|
| 125 |
-
def __init__(self, config: GptBertConfig):
|
| 126 |
-
super().__init__()
|
| 127 |
-
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 128 |
-
self.short_long_ratio = config.short_long_ratio
|
| 129 |
-
|
| 130 |
-
def set_window_length(self, config: GptBertConfig):
|
| 131 |
-
for i, layer in enumerate(self.layers):
|
| 132 |
-
if (i + 1) % self.local_global_ratio == 0:
|
| 133 |
-
layer.set_window_length(config.global_window_length)
|
| 134 |
-
else:
|
| 135 |
-
layer.set_window_length(config.local_window_length)
|
| 136 |
-
|
| 137 |
-
def forward(self, hidden_layer: torch.Tensor, padding_info, output_hidden_states=False, checkpoint_activations=False):
|
| 138 |
-
hidden_layers = [hidden_layer] if output_hidden_states else None
|
| 139 |
-
v1 = None
|
| 140 |
-
embeddings = hidden_layer
|
| 141 |
-
|
| 142 |
-
for layer in self.layers:
|
| 143 |
-
if checkpoint_activations:
|
| 144 |
-
hidden_layer, v1 = torch.utils.checkpoint.checkpoint(layers, hidden_layer, embeddings, v1, padding_info, use_reentrant=True)
|
| 145 |
-
else:
|
| 146 |
-
hidden_layer, v1 = layer(hidden_layer, embeddings, v1, padding_info)
|
| 147 |
-
|
| 148 |
-
if output_hidden_states:
|
| 149 |
-
hidden_layers.append(hidden_layer)
|
| 150 |
-
|
| 151 |
-
return hidden_layer, hidden_layers
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
class Layer(nn.Module):
|
| 155 |
-
def __init__(self, config: GptBertConfig, layer_idx: int):
|
| 156 |
-
super().__init__()
|
| 157 |
-
|
| 158 |
-
self.attention = SelfAttention(config, layer_idx)
|
| 159 |
-
self.mlp = FeedForward(config)
|
| 160 |
-
self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))
|
| 161 |
-
|
| 162 |
-
def set_window_length(self, window_length: int):
|
| 163 |
-
self.attention.set_window_length(window_length)
|
| 164 |
-
|
| 165 |
-
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 166 |
-
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
| 167 |
-
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 168 |
-
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 169 |
-
|
| 170 |
-
attention_output, v1 = self.attention(attention_output, qk_layer, v1, padding_info)
|
| 171 |
-
mlp_layer = mlp_layer + attention_output
|
| 172 |
-
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 173 |
-
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 174 |
-
|
| 175 |
-
return output, v1
|
| 176 |
-
|
| 177 |
-
|
| 178 |
class Embedding(nn.Module):
|
| 179 |
def __init__(self, config: GptBertConfig):
|
| 180 |
super().__init__()
|
|
@@ -246,6 +192,110 @@ def flash_attention_forward(qkv: torch.Tensor, rotary_emb: UnpaddedRotaryEmbeddi
|
|
| 246 |
return attn
|
| 247 |
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
class SelfAttention(nn.Module):
|
| 250 |
def __init__(self, config: GptBertConfig, layer_idx: int):
|
| 251 |
super().__init__()
|
|
@@ -280,7 +330,7 @@ class SelfAttention(nn.Module):
|
|
| 280 |
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
| 281 |
|
| 282 |
# Initialize rotary embeddings based on whether FlashAttention is available
|
| 283 |
-
if
|
| 284 |
self.rope_embedding = UnpaddedRotaryEmbedding(dim=self.d_qk, base=theta, max_seqlen=config.max_sequence_length)
|
| 285 |
else:
|
| 286 |
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
|
@@ -331,7 +381,7 @@ class SelfAttention(nn.Module):
|
|
| 331 |
|
| 332 |
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 333 |
# Get original shape info
|
| 334 |
-
if
|
| 335 |
# Unpadded case
|
| 336 |
indices, cu_seqlens, max_seqlen = padding_info
|
| 337 |
total_seqlen = hidden_layer.size(0)
|
|
@@ -346,7 +396,7 @@ class SelfAttention(nn.Module):
|
|
| 346 |
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 347 |
value = self.v_proj(hidden_layer)
|
| 348 |
|
| 349 |
-
if
|
| 350 |
# Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
|
| 351 |
query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
|
| 352 |
key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
|
|
@@ -437,108 +487,58 @@ class FeedForward(nn.Module):
|
|
| 437 |
return x
|
| 438 |
|
| 439 |
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
def forward(ctx, qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 444 |
-
# (total_nnz, 3, nheads, headdim)
|
| 445 |
-
qkv = qkv.contiguous()
|
| 446 |
-
total_nnz, _three, _nheads, headdim = qkv.shape
|
| 447 |
-
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 448 |
-
# we get the same tensor
|
| 449 |
-
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
| 450 |
-
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
| 451 |
-
apply_rotary(qk, cos, sin, seqlen_offsets=0, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=False, inplace=True)
|
| 452 |
-
|
| 453 |
-
ctx.save_for_backward(cos, sin, cu_seqlens)
|
| 454 |
-
ctx.max_seqlen = max_seqlen
|
| 455 |
-
return qkv
|
| 456 |
-
|
| 457 |
-
@staticmethod
|
| 458 |
-
def backward(ctx, do):
|
| 459 |
-
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 460 |
-
do = do.contiguous()
|
| 461 |
-
total_nnz, _three, _nheads, headdim = do.shape
|
| 462 |
-
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 463 |
-
# we get the same tensor
|
| 464 |
-
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
| 465 |
-
apply_rotary(
|
| 466 |
-
dqk,
|
| 467 |
-
cos,
|
| 468 |
-
sin,
|
| 469 |
-
seqlen_offsets=0,
|
| 470 |
-
cu_seqlens=cu_seqlens,
|
| 471 |
-
max_seqlen=ctx.max_seqlen,
|
| 472 |
-
interleaved=False,
|
| 473 |
-
inplace=True,
|
| 474 |
-
conjugate=True,
|
| 475 |
-
)
|
| 476 |
-
|
| 477 |
-
return do, None, None, None, None, None, None
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 481 |
-
def apply_rotary_unpadded(qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 482 |
-
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
| 483 |
-
|
| 484 |
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=None, interleaved=False)
|
| 489 |
-
self.max_seqlen = max_seqlen
|
| 490 |
|
| 491 |
-
|
| 492 |
-
|
| 493 |
|
| 494 |
-
def forward(self,
|
| 495 |
-
|
| 496 |
-
|
|
|
|
| 497 |
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
cu_seqlens=cu_seqlens,
|
| 503 |
-
max_seqlen=max_seqlen,
|
| 504 |
-
)
|
| 505 |
|
| 506 |
-
return
|
| 507 |
|
| 508 |
|
| 509 |
-
class
|
| 510 |
-
def __init__(self, config
|
| 511 |
super().__init__()
|
|
|
|
|
|
|
| 512 |
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
embedding = torch.einsum('n, d -> nd', pos, inv_freq)
|
| 520 |
-
embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
|
| 521 |
-
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
| 522 |
-
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
| 523 |
-
|
| 524 |
-
def forward(self, x: torch.Tensor):
|
| 525 |
-
hidden_layer = x.float()
|
| 526 |
|
| 527 |
-
|
|
|
|
|
|
|
|
|
|
| 528 |
|
| 529 |
-
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
| 535 |
-
hidden_layer[:, :, :, :x.size(-1) // 2]
|
| 536 |
-
],
|
| 537 |
-
dim=-1
|
| 538 |
-
)
|
| 539 |
|
| 540 |
-
|
| 541 |
-
return out.type_as(x)
|
| 542 |
|
| 543 |
|
| 544 |
#
|
|
@@ -565,33 +565,6 @@ class GptBertPreTrainedModel(PreTrainedModel):
|
|
| 565 |
module.bias.data.zero_()
|
| 566 |
module.weight.data.fill_(1.0)
|
| 567 |
|
| 568 |
-
@classmethod
|
| 569 |
-
def _autoset_attn_implementation(
|
| 570 |
-
cls,
|
| 571 |
-
config,
|
| 572 |
-
torch_dtype: Optional[torch.dtype] = None,
|
| 573 |
-
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
| 574 |
-
check_device_map: bool = True,
|
| 575 |
-
):
|
| 576 |
-
if config._attn_implementation_internal is None:
|
| 577 |
-
config._attn_implementation_internal = "flash_attention_2"
|
| 578 |
-
try:
|
| 579 |
-
return cls._check_and_enable_flash_attn_2(
|
| 580 |
-
config,
|
| 581 |
-
torch_dtype=torch.float16,
|
| 582 |
-
device_map=device_map,
|
| 583 |
-
hard_check_only=False,
|
| 584 |
-
check_device_map=check_device_map,
|
| 585 |
-
)
|
| 586 |
-
except (ValueError, ImportError):
|
| 587 |
-
config._attn_implementation_internal = None
|
| 588 |
-
return super()._autoset_attn_implementation(
|
| 589 |
-
config,
|
| 590 |
-
torch_dtype=torch_dtype,
|
| 591 |
-
device_map=device_map,
|
| 592 |
-
check_device_map=check_device_map,
|
| 593 |
-
)
|
| 594 |
-
|
| 595 |
|
| 596 |
class GptBertModel(GptBertPreTrainedModel):
|
| 597 |
def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
|
|
@@ -634,7 +607,7 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 634 |
else:
|
| 635 |
attention_mask = attention_mask.bool()
|
| 636 |
|
| 637 |
-
if
|
| 638 |
if len(attention_mask.size()) != 2:
|
| 639 |
raise ValueError("Bare `attention_mask` med to dimensjoner støttes nå for FlashAttention.")
|
| 640 |
with torch.no_grad():
|
|
@@ -665,7 +638,7 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 665 |
contextualized_embeddings = [layer.to(original_dtype) for layer in contextualized_embeddings]
|
| 666 |
|
| 667 |
# Pad output if using FlashAttention
|
| 668 |
-
if
|
| 669 |
last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
|
| 670 |
if output_hidden_states:
|
| 671 |
contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
|
|
|
|
| 121 |
return x * gelu_new(gate)
|
| 122 |
|
| 123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
class Embedding(nn.Module):
|
| 125 |
def __init__(self, config: GptBertConfig):
|
| 126 |
super().__init__()
|
|
|
|
| 192 |
return attn
|
| 193 |
|
| 194 |
|
| 195 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 196 |
+
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
| 197 |
+
@staticmethod
|
| 198 |
+
def forward(ctx, qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 199 |
+
# (total_nnz, 3, nheads, headdim)
|
| 200 |
+
qkv = qkv.contiguous()
|
| 201 |
+
total_nnz, _three, _nheads, headdim = qkv.shape
|
| 202 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 203 |
+
# we get the same tensor
|
| 204 |
+
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
| 205 |
+
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
| 206 |
+
apply_rotary(qk, cos, sin, seqlen_offsets=0, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=False, inplace=True)
|
| 207 |
+
|
| 208 |
+
ctx.save_for_backward(cos, sin, cu_seqlens)
|
| 209 |
+
ctx.max_seqlen = max_seqlen
|
| 210 |
+
return qkv
|
| 211 |
+
|
| 212 |
+
@staticmethod
|
| 213 |
+
def backward(ctx, do):
|
| 214 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 215 |
+
do = do.contiguous()
|
| 216 |
+
total_nnz, _three, _nheads, headdim = do.shape
|
| 217 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 218 |
+
# we get the same tensor
|
| 219 |
+
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
| 220 |
+
apply_rotary(
|
| 221 |
+
dqk,
|
| 222 |
+
cos,
|
| 223 |
+
sin,
|
| 224 |
+
seqlen_offsets=0,
|
| 225 |
+
cu_seqlens=cu_seqlens,
|
| 226 |
+
max_seqlen=ctx.max_seqlen,
|
| 227 |
+
interleaved=False,
|
| 228 |
+
inplace=True,
|
| 229 |
+
conjugate=True,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
return do, None, None, None, None, None, None
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 236 |
+
def apply_rotary_unpadded(qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 237 |
+
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 241 |
+
class UnpaddedRotaryEmbedding(RotaryEmbedding):
|
| 242 |
+
def __init__(self, dim: int, base: float = 10000.0, max_seqlen: Optional[int] = None):
|
| 243 |
+
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=None, interleaved=False)
|
| 244 |
+
self.max_seqlen = max_seqlen
|
| 245 |
+
|
| 246 |
+
if max_seqlen is not None and device is not None and dtype is not None:
|
| 247 |
+
self._update_cos_sin_cache(max_seqlen, device=device, dtype=None)
|
| 248 |
+
|
| 249 |
+
def forward(self, qkv: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen: Optional[int] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 250 |
+
if max_seqlen is not None:
|
| 251 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
| 252 |
+
|
| 253 |
+
qkv = apply_rotary_unpadded(
|
| 254 |
+
qkv,
|
| 255 |
+
self._cos_cached,
|
| 256 |
+
self._sin_cached,
|
| 257 |
+
cu_seqlens=cu_seqlens,
|
| 258 |
+
max_seqlen=max_seqlen,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
return qkv
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
| 265 |
+
def __init__(self, config, theta: int):
|
| 266 |
+
super().__init__()
|
| 267 |
+
|
| 268 |
+
head_size = config.query_key_head_size
|
| 269 |
+
assert head_size % 2 == 0
|
| 270 |
+
max_seq_len = config.max_sequence_length
|
| 271 |
+
|
| 272 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, head_size, 2, dtype=torch.float32) / head_size))
|
| 273 |
+
pos = torch.arange(max_seq_len, dtype=torch.float32)
|
| 274 |
+
embedding = torch.einsum('n, d -> nd', pos, inv_freq)
|
| 275 |
+
embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
|
| 276 |
+
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
| 277 |
+
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
| 278 |
+
|
| 279 |
+
def forward(self, x: torch.Tensor):
|
| 280 |
+
hidden_layer = x.float()
|
| 281 |
+
|
| 282 |
+
seq_len = x.shape[2]
|
| 283 |
+
|
| 284 |
+
cos_matrix = self.cos_matrix[:, None, :seq_len, :]
|
| 285 |
+
sin_matrix = self.sin_matrix[:, None, :seq_len, :]
|
| 286 |
+
|
| 287 |
+
x_rotate_half = torch.cat(
|
| 288 |
+
[
|
| 289 |
+
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
| 290 |
+
hidden_layer[:, :, :, :x.size(-1) // 2]
|
| 291 |
+
],
|
| 292 |
+
dim=-1
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
|
| 296 |
+
return out.type_as(x)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
class SelfAttention(nn.Module):
|
| 300 |
def __init__(self, config: GptBertConfig, layer_idx: int):
|
| 301 |
super().__init__()
|
|
|
|
| 330 |
theta = 160_000 if (layer_idx + 1) % config.short_long_ratio == 0 else 10_000
|
| 331 |
|
| 332 |
# Initialize rotary embeddings based on whether FlashAttention is available
|
| 333 |
+
if is_flash_attn_2_available():
|
| 334 |
self.rope_embedding = UnpaddedRotaryEmbedding(dim=self.d_qk, base=theta, max_seqlen=config.max_sequence_length)
|
| 335 |
else:
|
| 336 |
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
|
|
|
| 381 |
|
| 382 |
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 383 |
# Get original shape info
|
| 384 |
+
if is_flash_attn_2_available():
|
| 385 |
# Unpadded case
|
| 386 |
indices, cu_seqlens, max_seqlen = padding_info
|
| 387 |
total_seqlen = hidden_layer.size(0)
|
|
|
|
| 396 |
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 397 |
value = self.v_proj(hidden_layer)
|
| 398 |
|
| 399 |
+
if is_flash_attn_2_available():
|
| 400 |
# Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
|
| 401 |
query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
|
| 402 |
key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
|
|
|
|
| 487 |
return x
|
| 488 |
|
| 489 |
|
| 490 |
+
class Layer(nn.Module):
|
| 491 |
+
def __init__(self, config: GptBertConfig, layer_idx: int):
|
| 492 |
+
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
|
| 494 |
+
self.attention = SelfAttention(config, layer_idx)
|
| 495 |
+
self.mlp = FeedForward(config)
|
| 496 |
+
self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))
|
|
|
|
|
|
|
| 497 |
|
| 498 |
+
def set_window_length(self, window_length: int):
|
| 499 |
+
self.attention.set_window_length(window_length)
|
| 500 |
|
| 501 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 502 |
+
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
| 503 |
+
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 504 |
+
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 505 |
|
| 506 |
+
attention_output, v1 = self.attention(attention_output, qk_layer, v1, padding_info)
|
| 507 |
+
mlp_layer = mlp_layer + attention_output
|
| 508 |
+
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 509 |
+
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
|
|
|
|
|
|
|
|
|
| 510 |
|
| 511 |
+
return output, v1
|
| 512 |
|
| 513 |
|
| 514 |
+
class Encoder(nn.Module):
|
| 515 |
+
def __init__(self, config: GptBertConfig):
|
| 516 |
super().__init__()
|
| 517 |
+
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 518 |
+
self.short_long_ratio = config.short_long_ratio
|
| 519 |
|
| 520 |
+
def set_window_length(self, config: GptBertConfig):
|
| 521 |
+
for i, layer in enumerate(self.layers):
|
| 522 |
+
if (i + 1) % self.local_global_ratio == 0:
|
| 523 |
+
layer.set_window_length(config.global_window_length)
|
| 524 |
+
else:
|
| 525 |
+
layer.set_window_length(config.local_window_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
|
| 527 |
+
def forward(self, hidden_layer: torch.Tensor, padding_info, output_hidden_states=False, checkpoint_activations=False):
|
| 528 |
+
hidden_layers = [hidden_layer] if output_hidden_states else None
|
| 529 |
+
v1 = None
|
| 530 |
+
embeddings = hidden_layer
|
| 531 |
|
| 532 |
+
for layer in self.layers:
|
| 533 |
+
if checkpoint_activations:
|
| 534 |
+
hidden_layer, v1 = torch.utils.checkpoint.checkpoint(layers, hidden_layer, embeddings, v1, padding_info, use_reentrant=True)
|
| 535 |
+
else:
|
| 536 |
+
hidden_layer, v1 = layer(hidden_layer, embeddings, v1, padding_info)
|
| 537 |
|
| 538 |
+
if output_hidden_states:
|
| 539 |
+
hidden_layers.append(hidden_layer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
|
| 541 |
+
return hidden_layer, hidden_layers
|
|
|
|
| 542 |
|
| 543 |
|
| 544 |
#
|
|
|
|
| 565 |
module.bias.data.zero_()
|
| 566 |
module.weight.data.fill_(1.0)
|
| 567 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
|
| 569 |
class GptBertModel(GptBertPreTrainedModel):
|
| 570 |
def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
|
|
|
|
| 607 |
else:
|
| 608 |
attention_mask = attention_mask.bool()
|
| 609 |
|
| 610 |
+
if is_flash_attn_2_available():
|
| 611 |
if len(attention_mask.size()) != 2:
|
| 612 |
raise ValueError("Bare `attention_mask` med to dimensjoner støttes nå for FlashAttention.")
|
| 613 |
with torch.no_grad():
|
|
|
|
| 638 |
contextualized_embeddings = [layer.to(original_dtype) for layer in contextualized_embeddings]
|
| 639 |
|
| 640 |
# Pad output if using FlashAttention
|
| 641 |
+
if is_flash_attn_2_available():
|
| 642 |
last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
|
| 643 |
if output_hidden_states:
|
| 644 |
contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
|