AnitaLiu98
commited on
Commit
·
6e755fd
1
Parent(s):
41d8e47
add model
Browse files- README.md +59 -0
- config.json +28 -0
- generation_config.json +6 -0
- model-00001-of-00029.safetensors +3 -0
- model-00002-of-00029.safetensors +3 -0
- model-00003-of-00029.safetensors +3 -0
- model-00004-of-00029.safetensors +3 -0
- model-00005-of-00029.safetensors +3 -0
- model-00006-of-00029.safetensors +3 -0
- model-00007-of-00029.safetensors +3 -0
- model-00008-of-00029.safetensors +3 -0
- model-00009-of-00029.safetensors +3 -0
- model-00010-of-00029.safetensors +3 -0
- model-00011-of-00029.safetensors +3 -0
- model-00012-of-00029.safetensors +3 -0
- model-00013-of-00029.safetensors +3 -0
- model-00014-of-00029.safetensors +3 -0
- model-00015-of-00029.safetensors +3 -0
- model-00016-of-00029.safetensors +3 -0
- model-00017-of-00029.safetensors +3 -0
- model-00018-of-00029.safetensors +3 -0
- model-00019-of-00029.safetensors +3 -0
- model-00020-of-00029.safetensors +3 -0
- model-00021-of-00029.safetensors +3 -0
- model-00022-of-00029.safetensors +3 -0
- model-00023-of-00029.safetensors +3 -0
- model-00024-of-00029.safetensors +3 -0
- model-00025-of-00029.safetensors +3 -0
- model-00026-of-00029.safetensors +3 -0
- model-00027-of-00029.safetensors +3 -0
- model-00028-of-00029.safetensors +3 -0
- model-00029-of-00029.safetensors +3 -0
- model.safetensors.index.json +730 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
README.md
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
tags:
|
| 6 |
+
- code
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
<h1 align="center"> OpenCodeInterpreter: Integrating Code Generation with Execution and Refinement<h1>
|
| 10 |
+
|
| 11 |
+
<p align="center">
|
| 12 |
+
<img width="1000px" alt="OpenCodeInterpreter" src="https://opencodeinterpreter.github.io/static/images/figure1.png">
|
| 13 |
+
</p>
|
| 14 |
+
<p align="center">
|
| 15 |
+
<a href="https://opencodeinterpreter.github.io/">[🏠Homepage]</a>
|
| 16 |
+
|
|
| 17 |
+
<a href="https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/">[🛠️Code]</a>
|
| 18 |
+
</p>
|
| 19 |
+
<hr>
|
| 20 |
+
|
| 21 |
+
## Introduction
|
| 22 |
+
OpenCodeInterpreter is a family of open-source code generation systems designed to bridge the gap between large language models and advanced proprietary systems like the GPT-4 Code Interpreter. It significantly advances code generation capabilities by integrating execution and iterative refinement functionalities.
|
| 23 |
+
|
| 24 |
+
## Model Usage
|
| 25 |
+
### Inference
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
import torch
|
| 29 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 30 |
+
model_path="OpenCodeInterpreter-CL-70B"
|
| 31 |
+
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_path,
|
| 35 |
+
torch_dtype=torch.bfloat16,
|
| 36 |
+
device_map="auto",
|
| 37 |
+
)
|
| 38 |
+
model.eval()
|
| 39 |
+
|
| 40 |
+
prompt = "Write a function to find the shared elements from the given two lists."
|
| 41 |
+
inputs = tokenizer.apply_chat_template(
|
| 42 |
+
[{'role': 'user', 'content': prompt }],
|
| 43 |
+
return_tensors="pt"
|
| 44 |
+
).to(model.device)
|
| 45 |
+
outputs = model.generate(
|
| 46 |
+
inputs,
|
| 47 |
+
max_new_tokens=1024,
|
| 48 |
+
do_sample=False,
|
| 49 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 50 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 51 |
+
)
|
| 52 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
## Contact
|
| 57 |
+
|
| 58 |
+
If you have any inquiries, please feel free to raise an issue or reach out to us via email at: [email protected], [email protected].
|
| 59 |
+
We're here to assist you!"
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/workspace/checkpoints/CodeLlama-70b-hf",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 8192,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 28672,
|
| 14 |
+
"max_position_embeddings": 16384,
|
| 15 |
+
"model_type": "llama",
|
| 16 |
+
"num_attention_heads": 64,
|
| 17 |
+
"num_hidden_layers": 80,
|
| 18 |
+
"num_key_value_heads": 8,
|
| 19 |
+
"pretraining_tp": 1,
|
| 20 |
+
"rms_norm_eps": 1e-05,
|
| 21 |
+
"rope_scaling": null,
|
| 22 |
+
"rope_theta": 1000000,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.37.2",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"vocab_size": 32016
|
| 28 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.37.2"
|
| 6 |
+
}
|
model-00001-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54dca98bd28a6907b5d1d7ffcb434a1ab9c110b978a2e3419dade273142fd276
|
| 3 |
+
size 4718922480
|
model-00002-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:acbcf0616612ba4b1c5e7195e8b41adc9a029384dbba9b0e4fb500991a7d0957
|
| 3 |
+
size 4664167376
|
model-00003-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e95624a6c3ce7b1d5ce9005f1227f9f2622d64a6bd7da52741ac8053579eb23a
|
| 3 |
+
size 4999711704
|
model-00004-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6d798c8fc7fcf4e135bccb6e2b1853c8da01ba4424391190db45348722d1cf4
|
| 3 |
+
size 4966157048
|
model-00005-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d1cbb2192e1c69cf6728eba62fe3b72e6fd09f20863cfb29d2b851e44b666ee
|
| 3 |
+
size 4664134408
|
model-00006-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1f5e4f9c4c9eba2293cc88143e0fc0c7071d690f3a5035b70022ee0cf3d0bce
|
| 3 |
+
size 4664167408
|
model-00007-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8fc06d6f9ca5183d15b66f4bbb2d457790a9a9d564b81cb83fd5d7f5ead77cb
|
| 3 |
+
size 4664167408
|
model-00008-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9a1d3b505fd4aaa09db1e5d114a6c7ebca3a4c26743406874dbc9063e7f004a3
|
| 3 |
+
size 4999711728
|
model-00009-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:12f87ea3df6bcc851d7745af56bea968fafa10ab36a8149a21cf2da21b3fcd1c
|
| 3 |
+
size 4966157056
|
model-00010-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ee4d5df2b57d2327891a133a355d7e3c0aff78ebd16bbead7275c751d09087d9
|
| 3 |
+
size 4664134408
|
model-00011-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c8210467e5c877dcfcc75d0b00c0530211de949abc7142ae8e9c9e816395864
|
| 3 |
+
size 4664167408
|
model-00012-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5486460fd23f2157f410e41394e3f94b8a854a6324f538d91e556a9c480f049c
|
| 3 |
+
size 4664167408
|
model-00013-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:42dbe1a5c4bf16d9fe96a65e444d0194bc62f9dd71d6b4cac5de23fff032a676
|
| 3 |
+
size 4999711728
|
model-00014-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69f1797bacc337bc32c6f439284491340317f2012c0b71c2bfb7a16b04eefb11
|
| 3 |
+
size 4966157056
|
model-00015-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3057c839afd7a08fb4a54989917c5675dea0ac71a205ef4bb9026ce3046019f9
|
| 3 |
+
size 4664134408
|
model-00016-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb050fb76b92bbf8a84d407aee39cff23aef6b7f189a8869210fea73c25b4f38
|
| 3 |
+
size 4664167408
|
model-00017-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa942d84f9d120fea15d4019807e395746df6861d44db574c0d9b189425b5e5b
|
| 3 |
+
size 4664167408
|
model-00018-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b54661e0221de5b979b9739fb008ba09707039b71ed23b447cfc6603273a16ee
|
| 3 |
+
size 4999711728
|
model-00019-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5fe1ca9918440c22426e54e11c860bac34bfdded6c61df6652160b469552acf6
|
| 3 |
+
size 4966157056
|
model-00020-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1f06f32e6a46085f42e8104e2e712eda11a04633cd83a5ef58580d1a0bd04069
|
| 3 |
+
size 4664134408
|
model-00021-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:68c9a86d237e267a0ed7bc74b2e7b39f1388242482b8c29ad74ca56073b91c2a
|
| 3 |
+
size 4664167408
|
model-00022-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e97b8fc16c1f32d3f093c488488b09f7ce0bd89d78dd969ac77de39dc57497d8
|
| 3 |
+
size 4664167408
|
model-00023-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:435384f7220e8fdb02a54d86921e9e46c78d6b955f5fe77d945f0b47e20ce221
|
| 3 |
+
size 4999711728
|
model-00024-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efb16212268a4bac2389e39502017e3e83d3077b623e68be4aab03b7ce08e732
|
| 3 |
+
size 4966157056
|
model-00025-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fe20a8c187333f7a9ae3358d56bb2a76017c5f49e3feee535d391176a7678ae0
|
| 3 |
+
size 4664134408
|
model-00026-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:457c8f980fa2b58acfc48a7bb342e25b41966e4180a4544180f122b5c6d6466a
|
| 3 |
+
size 4664167408
|
model-00027-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5b2e75846505d1fd8c347b3bb969be8fb31a7db3cc3161d3e1067b2e7f8541d
|
| 3 |
+
size 4664167408
|
model-00028-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ecc31212555e9911a51363389e9664648f1c68f79ebe5a20c57eece3d453dd7
|
| 3 |
+
size 4999711728
|
model-00029-of-00029.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c47378ffd0a7acdc2b81be60fbf002c9abb3240a5e81ca89ac6433c5634332af
|
| 3 |
+
size 3779413928
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,730 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 137953820672
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00029-of-00029.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00029.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00029.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00029.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00029.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00029.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00029.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00029.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00029.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00029.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00029.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00029.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00029.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00029.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00029.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00029.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00029.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00029.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00029.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00029.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00005-of-00029.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00005-of-00029.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00005-of-00029.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00005-of-00029.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00005-of-00029.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00005-of-00029.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00005-of-00029.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00005-of-00029.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00005-of-00029.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00005-of-00029.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00006-of-00029.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00006-of-00029.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00006-of-00029.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00006-of-00029.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00006-of-00029.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00006-of-00029.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00006-of-00029.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00006-of-00029.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00007-of-00029.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00007-of-00029.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00007-of-00029.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00007-of-00029.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00007-of-00029.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00007-of-00029.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00007-of-00029.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00007-of-00029.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00029.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00029.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00029.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00029.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00029.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00008-of-00029.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00008-of-00029.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00008-of-00029.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00008-of-00029.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00008-of-00029.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00008-of-00029.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00008-of-00029.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00008-of-00029.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00009-of-00029.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00009-of-00029.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00009-of-00029.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00009-of-00029.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00009-of-00029.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00009-of-00029.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00009-of-00029.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00009-of-00029.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00010-of-00029.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00010-of-00029.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00010-of-00029.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00010-of-00029.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00010-of-00029.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00010-of-00029.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00010-of-00029.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00010-of-00029.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00010-of-00029.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00010-of-00029.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00011-of-00029.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00011-of-00029.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00011-of-00029.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00011-of-00029.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00011-of-00029.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00011-of-00029.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00011-of-00029.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00011-of-00029.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
|
| 242 |
+
"model.layers.32.input_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00012-of-00029.safetensors",
|
| 244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00012-of-00029.safetensors",
|
| 245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00012-of-00029.safetensors",
|
| 246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00012-of-00029.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
|
| 251 |
+
"model.layers.33.input_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
|
| 253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
|
| 254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
|
| 255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00012-of-00029.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00012-of-00029.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00012-of-00029.safetensors",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00012-of-00029.safetensors",
|
| 260 |
+
"model.layers.34.input_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
|
| 262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
|
| 263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
|
| 264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
|
| 269 |
+
"model.layers.35.input_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00013-of-00029.safetensors",
|
| 271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00013-of-00029.safetensors",
|
| 272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00013-of-00029.safetensors",
|
| 273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00013-of-00029.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00013-of-00029.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
|
| 278 |
+
"model.layers.36.input_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
|
| 280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
|
| 281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
|
| 282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00013-of-00029.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00013-of-00029.safetensors",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00013-of-00029.safetensors",
|
| 287 |
+
"model.layers.37.input_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
|
| 289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
|
| 290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
|
| 291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
|
| 296 |
+
"model.layers.38.input_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00014-of-00029.safetensors",
|
| 298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00014-of-00029.safetensors",
|
| 299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00014-of-00029.safetensors",
|
| 300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00014-of-00029.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00014-of-00029.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00014-of-00029.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00014-of-00029.safetensors",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00014-of-00029.safetensors",
|
| 305 |
+
"model.layers.39.input_layernorm.weight": "model-00015-of-00029.safetensors",
|
| 306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
|
| 307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
|
| 308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
|
| 309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
|
| 314 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00029.safetensors",
|
| 316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00029.safetensors",
|
| 317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00029.safetensors",
|
| 318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00029.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
|
| 323 |
+
"model.layers.40.input_layernorm.weight": "model-00015-of-00029.safetensors",
|
| 324 |
+
"model.layers.40.mlp.down_proj.weight": "model-00015-of-00029.safetensors",
|
| 325 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
|
| 326 |
+
"model.layers.40.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
|
| 327 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00015-of-00029.safetensors",
|
| 328 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
|
| 329 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
|
| 330 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
|
| 331 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
|
| 332 |
+
"model.layers.41.input_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 333 |
+
"model.layers.41.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
|
| 334 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00015-of-00029.safetensors",
|
| 335 |
+
"model.layers.41.mlp.up_proj.weight": "model-00015-of-00029.safetensors",
|
| 336 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 337 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00015-of-00029.safetensors",
|
| 338 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00015-of-00029.safetensors",
|
| 339 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00015-of-00029.safetensors",
|
| 340 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00015-of-00029.safetensors",
|
| 341 |
+
"model.layers.42.input_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 342 |
+
"model.layers.42.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
|
| 343 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
|
| 344 |
+
"model.layers.42.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
|
| 345 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 346 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
|
| 347 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
|
| 348 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
|
| 349 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
|
| 350 |
+
"model.layers.43.input_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 351 |
+
"model.layers.43.mlp.down_proj.weight": "model-00016-of-00029.safetensors",
|
| 352 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
|
| 353 |
+
"model.layers.43.mlp.up_proj.weight": "model-00016-of-00029.safetensors",
|
| 354 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00016-of-00029.safetensors",
|
| 355 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
|
| 356 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
|
| 357 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
|
| 358 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
|
| 359 |
+
"model.layers.44.input_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 360 |
+
"model.layers.44.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
|
| 361 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00016-of-00029.safetensors",
|
| 362 |
+
"model.layers.44.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
|
| 363 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 364 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00016-of-00029.safetensors",
|
| 365 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00016-of-00029.safetensors",
|
| 366 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00016-of-00029.safetensors",
|
| 367 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00016-of-00029.safetensors",
|
| 368 |
+
"model.layers.45.input_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 369 |
+
"model.layers.45.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
|
| 370 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
|
| 371 |
+
"model.layers.45.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
|
| 372 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 373 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
|
| 374 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
|
| 375 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
|
| 376 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
|
| 377 |
+
"model.layers.46.input_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 378 |
+
"model.layers.46.mlp.down_proj.weight": "model-00017-of-00029.safetensors",
|
| 379 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00017-of-00029.safetensors",
|
| 380 |
+
"model.layers.46.mlp.up_proj.weight": "model-00017-of-00029.safetensors",
|
| 381 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00017-of-00029.safetensors",
|
| 382 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
|
| 383 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
|
| 384 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
|
| 385 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
|
| 386 |
+
"model.layers.47.input_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 387 |
+
"model.layers.47.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
|
| 388 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
|
| 389 |
+
"model.layers.47.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
|
| 390 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 391 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00017-of-00029.safetensors",
|
| 392 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00017-of-00029.safetensors",
|
| 393 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00017-of-00029.safetensors",
|
| 394 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00017-of-00029.safetensors",
|
| 395 |
+
"model.layers.48.input_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 396 |
+
"model.layers.48.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
|
| 397 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
|
| 398 |
+
"model.layers.48.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
|
| 399 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 400 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
|
| 401 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
|
| 402 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
|
| 403 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
|
| 404 |
+
"model.layers.49.input_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 405 |
+
"model.layers.49.mlp.down_proj.weight": "model-00018-of-00029.safetensors",
|
| 406 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00018-of-00029.safetensors",
|
| 407 |
+
"model.layers.49.mlp.up_proj.weight": "model-00018-of-00029.safetensors",
|
| 408 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00018-of-00029.safetensors",
|
| 409 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
|
| 410 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00018-of-00029.safetensors",
|
| 411 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
|
| 412 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
|
| 413 |
+
"model.layers.5.input_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 414 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
|
| 415 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
|
| 416 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
|
| 417 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 418 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00029.safetensors",
|
| 419 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00029.safetensors",
|
| 420 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00029.safetensors",
|
| 421 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00029.safetensors",
|
| 422 |
+
"model.layers.50.input_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 423 |
+
"model.layers.50.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
|
| 424 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
|
| 425 |
+
"model.layers.50.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
|
| 426 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 427 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00018-of-00029.safetensors",
|
| 428 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
|
| 429 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00018-of-00029.safetensors",
|
| 430 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00018-of-00029.safetensors",
|
| 431 |
+
"model.layers.51.input_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 432 |
+
"model.layers.51.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
|
| 433 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
|
| 434 |
+
"model.layers.51.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
|
| 435 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 436 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
|
| 437 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
|
| 438 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
|
| 439 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
|
| 440 |
+
"model.layers.52.input_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 441 |
+
"model.layers.52.mlp.down_proj.weight": "model-00019-of-00029.safetensors",
|
| 442 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00019-of-00029.safetensors",
|
| 443 |
+
"model.layers.52.mlp.up_proj.weight": "model-00019-of-00029.safetensors",
|
| 444 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00019-of-00029.safetensors",
|
| 445 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00019-of-00029.safetensors",
|
| 446 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00019-of-00029.safetensors",
|
| 447 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00019-of-00029.safetensors",
|
| 448 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00019-of-00029.safetensors",
|
| 449 |
+
"model.layers.53.input_layernorm.weight": "model-00020-of-00029.safetensors",
|
| 450 |
+
"model.layers.53.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
|
| 451 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
|
| 452 |
+
"model.layers.53.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
|
| 453 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
|
| 454 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
|
| 455 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
|
| 456 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
|
| 457 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
|
| 458 |
+
"model.layers.54.input_layernorm.weight": "model-00020-of-00029.safetensors",
|
| 459 |
+
"model.layers.54.mlp.down_proj.weight": "model-00020-of-00029.safetensors",
|
| 460 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
|
| 461 |
+
"model.layers.54.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
|
| 462 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00020-of-00029.safetensors",
|
| 463 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
|
| 464 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
|
| 465 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
|
| 466 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
|
| 467 |
+
"model.layers.55.input_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 468 |
+
"model.layers.55.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
|
| 469 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00020-of-00029.safetensors",
|
| 470 |
+
"model.layers.55.mlp.up_proj.weight": "model-00020-of-00029.safetensors",
|
| 471 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 472 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00020-of-00029.safetensors",
|
| 473 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00020-of-00029.safetensors",
|
| 474 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00020-of-00029.safetensors",
|
| 475 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00020-of-00029.safetensors",
|
| 476 |
+
"model.layers.56.input_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 477 |
+
"model.layers.56.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
|
| 478 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
|
| 479 |
+
"model.layers.56.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
|
| 480 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 481 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
|
| 482 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
|
| 483 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
|
| 484 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
|
| 485 |
+
"model.layers.57.input_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 486 |
+
"model.layers.57.mlp.down_proj.weight": "model-00021-of-00029.safetensors",
|
| 487 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
|
| 488 |
+
"model.layers.57.mlp.up_proj.weight": "model-00021-of-00029.safetensors",
|
| 489 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00021-of-00029.safetensors",
|
| 490 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
|
| 491 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
|
| 492 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
|
| 493 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
|
| 494 |
+
"model.layers.58.input_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 495 |
+
"model.layers.58.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
|
| 496 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00021-of-00029.safetensors",
|
| 497 |
+
"model.layers.58.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
|
| 498 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 499 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00021-of-00029.safetensors",
|
| 500 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00021-of-00029.safetensors",
|
| 501 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00021-of-00029.safetensors",
|
| 502 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00021-of-00029.safetensors",
|
| 503 |
+
"model.layers.59.input_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 504 |
+
"model.layers.59.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
|
| 505 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
|
| 506 |
+
"model.layers.59.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
|
| 507 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 508 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
|
| 509 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
|
| 510 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
|
| 511 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
|
| 512 |
+
"model.layers.6.input_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 513 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
|
| 514 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
|
| 515 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
|
| 516 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 517 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
|
| 518 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
|
| 519 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
|
| 520 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
|
| 521 |
+
"model.layers.60.input_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 522 |
+
"model.layers.60.mlp.down_proj.weight": "model-00022-of-00029.safetensors",
|
| 523 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00022-of-00029.safetensors",
|
| 524 |
+
"model.layers.60.mlp.up_proj.weight": "model-00022-of-00029.safetensors",
|
| 525 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00022-of-00029.safetensors",
|
| 526 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
|
| 527 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
|
| 528 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
|
| 529 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
|
| 530 |
+
"model.layers.61.input_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 531 |
+
"model.layers.61.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
|
| 532 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
|
| 533 |
+
"model.layers.61.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
|
| 534 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 535 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00022-of-00029.safetensors",
|
| 536 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00022-of-00029.safetensors",
|
| 537 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00022-of-00029.safetensors",
|
| 538 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00022-of-00029.safetensors",
|
| 539 |
+
"model.layers.62.input_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 540 |
+
"model.layers.62.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
|
| 541 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
|
| 542 |
+
"model.layers.62.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
|
| 543 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 544 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
|
| 545 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
|
| 546 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
|
| 547 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
|
| 548 |
+
"model.layers.63.input_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 549 |
+
"model.layers.63.mlp.down_proj.weight": "model-00023-of-00029.safetensors",
|
| 550 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00023-of-00029.safetensors",
|
| 551 |
+
"model.layers.63.mlp.up_proj.weight": "model-00023-of-00029.safetensors",
|
| 552 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00023-of-00029.safetensors",
|
| 553 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
|
| 554 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00023-of-00029.safetensors",
|
| 555 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
|
| 556 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
|
| 557 |
+
"model.layers.64.input_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 558 |
+
"model.layers.64.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
|
| 559 |
+
"model.layers.64.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
|
| 560 |
+
"model.layers.64.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
|
| 561 |
+
"model.layers.64.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 562 |
+
"model.layers.64.self_attn.k_proj.weight": "model-00023-of-00029.safetensors",
|
| 563 |
+
"model.layers.64.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
|
| 564 |
+
"model.layers.64.self_attn.q_proj.weight": "model-00023-of-00029.safetensors",
|
| 565 |
+
"model.layers.64.self_attn.v_proj.weight": "model-00023-of-00029.safetensors",
|
| 566 |
+
"model.layers.65.input_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 567 |
+
"model.layers.65.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
|
| 568 |
+
"model.layers.65.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
|
| 569 |
+
"model.layers.65.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
|
| 570 |
+
"model.layers.65.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 571 |
+
"model.layers.65.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
|
| 572 |
+
"model.layers.65.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
|
| 573 |
+
"model.layers.65.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
|
| 574 |
+
"model.layers.65.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
|
| 575 |
+
"model.layers.66.input_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 576 |
+
"model.layers.66.mlp.down_proj.weight": "model-00024-of-00029.safetensors",
|
| 577 |
+
"model.layers.66.mlp.gate_proj.weight": "model-00024-of-00029.safetensors",
|
| 578 |
+
"model.layers.66.mlp.up_proj.weight": "model-00024-of-00029.safetensors",
|
| 579 |
+
"model.layers.66.post_attention_layernorm.weight": "model-00024-of-00029.safetensors",
|
| 580 |
+
"model.layers.66.self_attn.k_proj.weight": "model-00024-of-00029.safetensors",
|
| 581 |
+
"model.layers.66.self_attn.o_proj.weight": "model-00024-of-00029.safetensors",
|
| 582 |
+
"model.layers.66.self_attn.q_proj.weight": "model-00024-of-00029.safetensors",
|
| 583 |
+
"model.layers.66.self_attn.v_proj.weight": "model-00024-of-00029.safetensors",
|
| 584 |
+
"model.layers.67.input_layernorm.weight": "model-00025-of-00029.safetensors",
|
| 585 |
+
"model.layers.67.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
|
| 586 |
+
"model.layers.67.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
|
| 587 |
+
"model.layers.67.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
|
| 588 |
+
"model.layers.67.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
|
| 589 |
+
"model.layers.67.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
|
| 590 |
+
"model.layers.67.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
|
| 591 |
+
"model.layers.67.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
|
| 592 |
+
"model.layers.67.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
|
| 593 |
+
"model.layers.68.input_layernorm.weight": "model-00025-of-00029.safetensors",
|
| 594 |
+
"model.layers.68.mlp.down_proj.weight": "model-00025-of-00029.safetensors",
|
| 595 |
+
"model.layers.68.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
|
| 596 |
+
"model.layers.68.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
|
| 597 |
+
"model.layers.68.post_attention_layernorm.weight": "model-00025-of-00029.safetensors",
|
| 598 |
+
"model.layers.68.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
|
| 599 |
+
"model.layers.68.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
|
| 600 |
+
"model.layers.68.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
|
| 601 |
+
"model.layers.68.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
|
| 602 |
+
"model.layers.69.input_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 603 |
+
"model.layers.69.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
|
| 604 |
+
"model.layers.69.mlp.gate_proj.weight": "model-00025-of-00029.safetensors",
|
| 605 |
+
"model.layers.69.mlp.up_proj.weight": "model-00025-of-00029.safetensors",
|
| 606 |
+
"model.layers.69.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 607 |
+
"model.layers.69.self_attn.k_proj.weight": "model-00025-of-00029.safetensors",
|
| 608 |
+
"model.layers.69.self_attn.o_proj.weight": "model-00025-of-00029.safetensors",
|
| 609 |
+
"model.layers.69.self_attn.q_proj.weight": "model-00025-of-00029.safetensors",
|
| 610 |
+
"model.layers.69.self_attn.v_proj.weight": "model-00025-of-00029.safetensors",
|
| 611 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 612 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00029.safetensors",
|
| 613 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00003-of-00029.safetensors",
|
| 614 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00029.safetensors",
|
| 615 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00029.safetensors",
|
| 616 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
|
| 617 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00003-of-00029.safetensors",
|
| 618 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
|
| 619 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
|
| 620 |
+
"model.layers.70.input_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 621 |
+
"model.layers.70.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
|
| 622 |
+
"model.layers.70.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
|
| 623 |
+
"model.layers.70.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
|
| 624 |
+
"model.layers.70.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 625 |
+
"model.layers.70.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
|
| 626 |
+
"model.layers.70.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
|
| 627 |
+
"model.layers.70.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
|
| 628 |
+
"model.layers.70.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
|
| 629 |
+
"model.layers.71.input_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 630 |
+
"model.layers.71.mlp.down_proj.weight": "model-00026-of-00029.safetensors",
|
| 631 |
+
"model.layers.71.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
|
| 632 |
+
"model.layers.71.mlp.up_proj.weight": "model-00026-of-00029.safetensors",
|
| 633 |
+
"model.layers.71.post_attention_layernorm.weight": "model-00026-of-00029.safetensors",
|
| 634 |
+
"model.layers.71.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
|
| 635 |
+
"model.layers.71.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
|
| 636 |
+
"model.layers.71.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
|
| 637 |
+
"model.layers.71.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
|
| 638 |
+
"model.layers.72.input_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 639 |
+
"model.layers.72.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
|
| 640 |
+
"model.layers.72.mlp.gate_proj.weight": "model-00026-of-00029.safetensors",
|
| 641 |
+
"model.layers.72.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
|
| 642 |
+
"model.layers.72.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 643 |
+
"model.layers.72.self_attn.k_proj.weight": "model-00026-of-00029.safetensors",
|
| 644 |
+
"model.layers.72.self_attn.o_proj.weight": "model-00026-of-00029.safetensors",
|
| 645 |
+
"model.layers.72.self_attn.q_proj.weight": "model-00026-of-00029.safetensors",
|
| 646 |
+
"model.layers.72.self_attn.v_proj.weight": "model-00026-of-00029.safetensors",
|
| 647 |
+
"model.layers.73.input_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 648 |
+
"model.layers.73.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
|
| 649 |
+
"model.layers.73.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
|
| 650 |
+
"model.layers.73.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
|
| 651 |
+
"model.layers.73.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 652 |
+
"model.layers.73.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
|
| 653 |
+
"model.layers.73.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
|
| 654 |
+
"model.layers.73.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
|
| 655 |
+
"model.layers.73.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
|
| 656 |
+
"model.layers.74.input_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 657 |
+
"model.layers.74.mlp.down_proj.weight": "model-00027-of-00029.safetensors",
|
| 658 |
+
"model.layers.74.mlp.gate_proj.weight": "model-00027-of-00029.safetensors",
|
| 659 |
+
"model.layers.74.mlp.up_proj.weight": "model-00027-of-00029.safetensors",
|
| 660 |
+
"model.layers.74.post_attention_layernorm.weight": "model-00027-of-00029.safetensors",
|
| 661 |
+
"model.layers.74.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
|
| 662 |
+
"model.layers.74.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
|
| 663 |
+
"model.layers.74.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
|
| 664 |
+
"model.layers.74.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
|
| 665 |
+
"model.layers.75.input_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 666 |
+
"model.layers.75.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
|
| 667 |
+
"model.layers.75.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
|
| 668 |
+
"model.layers.75.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
|
| 669 |
+
"model.layers.75.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 670 |
+
"model.layers.75.self_attn.k_proj.weight": "model-00027-of-00029.safetensors",
|
| 671 |
+
"model.layers.75.self_attn.o_proj.weight": "model-00027-of-00029.safetensors",
|
| 672 |
+
"model.layers.75.self_attn.q_proj.weight": "model-00027-of-00029.safetensors",
|
| 673 |
+
"model.layers.75.self_attn.v_proj.weight": "model-00027-of-00029.safetensors",
|
| 674 |
+
"model.layers.76.input_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 675 |
+
"model.layers.76.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
|
| 676 |
+
"model.layers.76.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
|
| 677 |
+
"model.layers.76.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
|
| 678 |
+
"model.layers.76.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 679 |
+
"model.layers.76.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
|
| 680 |
+
"model.layers.76.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
|
| 681 |
+
"model.layers.76.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
|
| 682 |
+
"model.layers.76.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
|
| 683 |
+
"model.layers.77.input_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 684 |
+
"model.layers.77.mlp.down_proj.weight": "model-00028-of-00029.safetensors",
|
| 685 |
+
"model.layers.77.mlp.gate_proj.weight": "model-00028-of-00029.safetensors",
|
| 686 |
+
"model.layers.77.mlp.up_proj.weight": "model-00028-of-00029.safetensors",
|
| 687 |
+
"model.layers.77.post_attention_layernorm.weight": "model-00028-of-00029.safetensors",
|
| 688 |
+
"model.layers.77.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
|
| 689 |
+
"model.layers.77.self_attn.o_proj.weight": "model-00028-of-00029.safetensors",
|
| 690 |
+
"model.layers.77.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
|
| 691 |
+
"model.layers.77.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
|
| 692 |
+
"model.layers.78.input_layernorm.weight": "model-00029-of-00029.safetensors",
|
| 693 |
+
"model.layers.78.mlp.down_proj.weight": "model-00029-of-00029.safetensors",
|
| 694 |
+
"model.layers.78.mlp.gate_proj.weight": "model-00029-of-00029.safetensors",
|
| 695 |
+
"model.layers.78.mlp.up_proj.weight": "model-00029-of-00029.safetensors",
|
| 696 |
+
"model.layers.78.post_attention_layernorm.weight": "model-00029-of-00029.safetensors",
|
| 697 |
+
"model.layers.78.self_attn.k_proj.weight": "model-00028-of-00029.safetensors",
|
| 698 |
+
"model.layers.78.self_attn.o_proj.weight": "model-00029-of-00029.safetensors",
|
| 699 |
+
"model.layers.78.self_attn.q_proj.weight": "model-00028-of-00029.safetensors",
|
| 700 |
+
"model.layers.78.self_attn.v_proj.weight": "model-00028-of-00029.safetensors",
|
| 701 |
+
"model.layers.79.input_layernorm.weight": "model-00029-of-00029.safetensors",
|
| 702 |
+
"model.layers.79.mlp.down_proj.weight": "model-00029-of-00029.safetensors",
|
| 703 |
+
"model.layers.79.mlp.gate_proj.weight": "model-00029-of-00029.safetensors",
|
| 704 |
+
"model.layers.79.mlp.up_proj.weight": "model-00029-of-00029.safetensors",
|
| 705 |
+
"model.layers.79.post_attention_layernorm.weight": "model-00029-of-00029.safetensors",
|
| 706 |
+
"model.layers.79.self_attn.k_proj.weight": "model-00029-of-00029.safetensors",
|
| 707 |
+
"model.layers.79.self_attn.o_proj.weight": "model-00029-of-00029.safetensors",
|
| 708 |
+
"model.layers.79.self_attn.q_proj.weight": "model-00029-of-00029.safetensors",
|
| 709 |
+
"model.layers.79.self_attn.v_proj.weight": "model-00029-of-00029.safetensors",
|
| 710 |
+
"model.layers.8.input_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 711 |
+
"model.layers.8.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
|
| 712 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
|
| 713 |
+
"model.layers.8.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
|
| 714 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 715 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00029.safetensors",
|
| 716 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
|
| 717 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00029.safetensors",
|
| 718 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00029.safetensors",
|
| 719 |
+
"model.layers.9.input_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 720 |
+
"model.layers.9.mlp.down_proj.weight": "model-00004-of-00029.safetensors",
|
| 721 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00004-of-00029.safetensors",
|
| 722 |
+
"model.layers.9.mlp.up_proj.weight": "model-00004-of-00029.safetensors",
|
| 723 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00004-of-00029.safetensors",
|
| 724 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00004-of-00029.safetensors",
|
| 725 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00029.safetensors",
|
| 726 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00004-of-00029.safetensors",
|
| 727 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00004-of-00029.safetensors",
|
| 728 |
+
"model.norm.weight": "model-00029-of-00029.safetensors"
|
| 729 |
+
}
|
| 730 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99049b351301fb75b3b0587a484b675cbfd51abe27d2b92eabd385e4c41f97e9
|
| 3 |
+
size 500033
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"clean_up_tokenization_spaces": false,
|
| 32 |
+
"eos_token": "</s>",
|
| 33 |
+
"legacy": true,
|
| 34 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 35 |
+
"pad_token": "</s>",
|
| 36 |
+
"padding_side": "right",
|
| 37 |
+
"sp_model_kwargs": {},
|
| 38 |
+
"spaces_between_special_tokens": false,
|
| 39 |
+
"split_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b304ab45b8d0c89fdb6cd1bfa96a5145976b77e444a32c0d510f39da810803f1
|
| 3 |
+
size 7160
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _has_callable(obj, fn):
|
| 252 |
+
attr = getattr(obj, fn, None)
|
| 253 |
+
return callable(attr)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
+
|
| 259 |
+
# Reconstruction protocol:
|
| 260 |
+
#
|
| 261 |
+
# XXX: document this
|
| 262 |
+
|
| 263 |
+
if debug:
|
| 264 |
+
for i in range(world_size):
|
| 265 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
+
|
| 268 |
+
# XXX: memory usage doubles here (zero2)
|
| 269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
+
merged_single_partition_of_fp32_groups = []
|
| 271 |
+
for i in range(num_param_groups):
|
| 272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
+
avail_numel = sum(
|
| 276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
+
|
| 278 |
+
if debug:
|
| 279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
+
# not asserting if there is a mismatch due to possible padding
|
| 282 |
+
print(f"Have {avail_numel} numels to process.")
|
| 283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
+
|
| 285 |
+
# params
|
| 286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
+
# out-of-core computing solution
|
| 288 |
+
total_numel = 0
|
| 289 |
+
total_params = 0
|
| 290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
+
offset = 0
|
| 292 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
+
for name, shape in shapes.items():
|
| 294 |
+
|
| 295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
+
total_numel += unpartitioned_numel
|
| 297 |
+
total_params += 1
|
| 298 |
+
|
| 299 |
+
if debug:
|
| 300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
+
offset += unpartitioned_numel
|
| 303 |
+
|
| 304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
+
align_to = 2 * world_size
|
| 309 |
+
|
| 310 |
+
def zero2_align(x):
|
| 311 |
+
return align_to * math.ceil(x / align_to)
|
| 312 |
+
|
| 313 |
+
if debug:
|
| 314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
+
|
| 316 |
+
offset = zero2_align(offset)
|
| 317 |
+
avail_numel = zero2_align(avail_numel)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
# Sanity check
|
| 323 |
+
if offset != avail_numel:
|
| 324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
+
|
| 326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
+
state_dict = OrderedDict()
|
| 331 |
+
|
| 332 |
+
# buffers
|
| 333 |
+
buffers = zero_model_states[0].buffers
|
| 334 |
+
state_dict.update(buffers)
|
| 335 |
+
if debug:
|
| 336 |
+
print(f"added {len(buffers)} buffers")
|
| 337 |
+
|
| 338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
+
|
| 340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
+
|
| 342 |
+
# recover shared parameters
|
| 343 |
+
for pair in zero_model_states[0].shared_params:
|
| 344 |
+
if pair[1] in state_dict:
|
| 345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
+
|
| 347 |
+
return state_dict
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
+
remainder = unpartitioned_numel % world_size
|
| 352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
+
return partitioned_numel, padding_numel
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
if debug:
|
| 362 |
+
for i in range(world_size):
|
| 363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
+
|
| 366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
+
wanted_params = len(frozen_param_shapes)
|
| 368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
+
|
| 373 |
+
total_params = 0
|
| 374 |
+
total_numel = 0
|
| 375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
+
total_params += 1
|
| 377 |
+
unpartitioned_numel = shape.numel()
|
| 378 |
+
total_numel += unpartitioned_numel
|
| 379 |
+
|
| 380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
+
|
| 383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
+
|
| 385 |
+
if debug:
|
| 386 |
+
print(
|
| 387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
+
|
| 399 |
+
# merge list of dicts, preserving order
|
| 400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
+
|
| 402 |
+
if debug:
|
| 403 |
+
for i in range(world_size):
|
| 404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
+
|
| 406 |
+
wanted_params = len(param_shapes)
|
| 407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
+
# not asserting if there is a mismatch due to possible padding
|
| 409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
+
|
| 413 |
+
# params
|
| 414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
+
# out-of-core computing solution
|
| 416 |
+
offset = 0
|
| 417 |
+
total_numel = 0
|
| 418 |
+
total_params = 0
|
| 419 |
+
for name, shape in param_shapes.items():
|
| 420 |
+
|
| 421 |
+
unpartitioned_numel = shape.numel()
|
| 422 |
+
total_numel += unpartitioned_numel
|
| 423 |
+
total_params += 1
|
| 424 |
+
|
| 425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
+
|
| 427 |
+
if debug:
|
| 428 |
+
print(
|
| 429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# XXX: memory usage doubles here
|
| 433 |
+
state_dict[name] = torch.cat(
|
| 434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
+
offset += partitioned_numel
|
| 437 |
+
|
| 438 |
+
offset *= world_size
|
| 439 |
+
|
| 440 |
+
# Sanity check
|
| 441 |
+
if offset != avail_numel:
|
| 442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
+
|
| 444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
+
state_dict = OrderedDict()
|
| 449 |
+
|
| 450 |
+
# buffers
|
| 451 |
+
buffers = zero_model_states[0].buffers
|
| 452 |
+
state_dict.update(buffers)
|
| 453 |
+
if debug:
|
| 454 |
+
print(f"added {len(buffers)} buffers")
|
| 455 |
+
|
| 456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
+
|
| 458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
+
|
| 460 |
+
# recover shared parameters
|
| 461 |
+
for pair in zero_model_states[0].shared_params:
|
| 462 |
+
if pair[1] in state_dict:
|
| 463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
+
|
| 465 |
+
return state_dict
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
+
"""
|
| 470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
+
via a model hub.
|
| 473 |
+
|
| 474 |
+
Args:
|
| 475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
- pytorch ``state_dict``
|
| 480 |
+
|
| 481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
+
the checkpoint.
|
| 484 |
+
|
| 485 |
+
A typical usage might be ::
|
| 486 |
+
|
| 487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
+
# do the training and checkpoint saving
|
| 489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
+
model = model.cpu() # move to cpu
|
| 491 |
+
model.load_state_dict(state_dict)
|
| 492 |
+
# submit to model hub or save the model to share with others
|
| 493 |
+
|
| 494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
+
|
| 498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
+
|
| 500 |
+
"""
|
| 501 |
+
if tag is None:
|
| 502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
+
if os.path.isfile(latest_path):
|
| 504 |
+
with open(latest_path, 'r') as fd:
|
| 505 |
+
tag = fd.read().strip()
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
+
|
| 509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
+
|
| 511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
+
|
| 514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
+
"""
|
| 519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
+
torch.save(state_dict, output_file)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
+
"""
|
| 535 |
+
1. Put the provided model to cpu
|
| 536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
+
3. Load it into the provided model
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
- ``model``: the model object to update
|
| 541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
- ``model`: modified model
|
| 546 |
+
|
| 547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
+
conveniently placed for you in the checkpoint folder.
|
| 550 |
+
|
| 551 |
+
A typical usage might be ::
|
| 552 |
+
|
| 553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
+
# submit to model hub or save the model to share with others
|
| 556 |
+
|
| 557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
logger.info(f"Extracting fp32 weights")
|
| 563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
+
|
| 565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
+
model = model.cpu()
|
| 567 |
+
model.load_state_dict(state_dict, strict=False)
|
| 568 |
+
|
| 569 |
+
return model
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
if __name__ == "__main__":
|
| 573 |
+
|
| 574 |
+
parser = argparse.ArgumentParser()
|
| 575 |
+
parser.add_argument("checkpoint_dir",
|
| 576 |
+
type=str,
|
| 577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
+
parser.add_argument(
|
| 579 |
+
"output_file",
|
| 580 |
+
type=str,
|
| 581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
+
parser.add_argument("-t",
|
| 583 |
+
"--tag",
|
| 584 |
+
type=str,
|
| 585 |
+
default=None,
|
| 586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
+
args = parser.parse_args()
|
| 589 |
+
|
| 590 |
+
debug = args.debug
|
| 591 |
+
|
| 592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|