File size: 11,824 Bytes
f5a619b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 7040 (92bb442ad) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce RTX 3090) (0000:01:00.0) - 20278 MiB free
llama_model_load_from_file_impl: using device CUDA1 (NVIDIA GeForce RTX 3090) (0000:03:00.0) - 23582 MiB free
llama_model_loader: loaded meta data with 39 key-value pairs and 579 tensors from /mnt/world8/AI/Models/Qwen3-30B-A3B-Instruct-2507-unsloth/Magic_Quant/GGUF/Qwen3-30B-A3B-Instruct-2507-unsloth-IQ4_NL.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3moe
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3 30B A3B Instruct 2507 Unsloth
llama_model_loader: - kv   3:                            general.version str              = 2507
llama_model_loader: - kv   4:                           general.finetune str              = Instruct-unsloth
llama_model_loader: - kv   5:                           general.basename str              = Qwen3
llama_model_loader: - kv   6:                         general.size_label str              = 30B-A3B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                       general.license.link str              = https://huggingface.co/Qwen/Qwen3-30B...
llama_model_loader: - kv   9:                   general.base_model.count u32              = 1
llama_model_loader: - kv  10:                  general.base_model.0.name str              = Qwen3 30B A3B Instruct 2507
llama_model_loader: - kv  11:               general.base_model.0.version str              = 2507
llama_model_loader: - kv  12:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  13:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-30B...
llama_model_loader: - kv  14:                               general.tags arr[str,2]       = ["unsloth", "text-generation"]
llama_model_loader: - kv  15:                       qwen3moe.block_count u32              = 48
llama_model_loader: - kv  16:                    qwen3moe.context_length u32              = 262144
llama_model_loader: - kv  17:                  qwen3moe.embedding_length u32              = 2048
llama_model_loader: - kv  18:               qwen3moe.feed_forward_length u32              = 6144
llama_model_loader: - kv  19:              qwen3moe.attention.head_count u32              = 32
llama_model_loader: - kv  20:           qwen3moe.attention.head_count_kv u32              = 4
llama_model_loader: - kv  21:                    qwen3moe.rope.freq_base f32              = 10000000.000000
llama_model_loader: - kv  22:  qwen3moe.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  23:                 qwen3moe.expert_used_count u32              = 8
llama_model_loader: - kv  24:              qwen3moe.attention.key_length u32              = 128
llama_model_loader: - kv  25:            qwen3moe.attention.value_length u32              = 128
llama_model_loader: - kv  26:                      qwen3moe.expert_count u32              = 128
llama_model_loader: - kv  27:        qwen3moe.expert_feed_forward_length u32              = 768
llama_model_loader: - kv  28:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  29:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  30:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  31:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  32:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  33:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  34:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  35:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  36:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  37:               general.quantization_version u32              = 2
llama_model_loader: - kv  38:                          general.file_type u32              = 25
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type q5_K:   54 tensors
llama_model_loader: - type q6_K:    1 tensors
llama_model_loader: - type iq4_nl:  283 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = IQ4_NL - 4.5 bpw
print_info: file size   = 16.26 GiB (4.57 BPW) 
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3moe
print_info: vocab_only       = 0
print_info: n_ctx_train      = 262144
print_info: n_embd           = 2048
print_info: n_embd_inp       = 2048
print_info: n_layer          = 48
print_info: n_head           = 32
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 8
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 6144
print_info: n_expert         = 128
print_info: n_expert_used    = 8
print_info: n_expert_groups  = 0
print_info: n_group_used     = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 262144
print_info: rope_finetuned   = unknown
print_info: model type       = 30B.A3B
print_info: model params     = 30.53 B
print_info: general.name     = Qwen3 30B A3B Instruct 2507 Unsloth
print_info: n_ff_exp         = 768
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 11 ','
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 20 repeating layers to GPU
load_tensors: offloaded 20/49 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  9941.82 MiB
load_tensors:        CUDA0 model buffer size =  3352.67 MiB
load_tensors:        CUDA1 model buffer size =  3352.67 MiB
....................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 2048
llama_context: n_ctx_seq     = 2048
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = false
llama_context: freq_base     = 10000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_seq (2048) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
llama_kv_cache:        CPU KV buffer size =   112.00 MiB
llama_kv_cache:      CUDA0 KV buffer size =    40.00 MiB
llama_kv_cache:      CUDA1 KV buffer size =    40.00 MiB
llama_kv_cache: size =  192.00 MiB (  2048 cells,  48 layers,  1/1 seqs), K (f16):   96.00 MiB, V (f16):   96.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:      CUDA0 compute buffer size =   544.18 MiB
llama_context:      CUDA1 compute buffer size =    82.01 MiB
llama_context:  CUDA_Host compute buffer size =     8.01 MiB
llama_context: graph nodes  = 3031
llama_context: graph splits = 397 (with bs=512), 88 (with bs=1)
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)

system_info: n_threads = 16 (n_threads_batch = 16) / 32 | CUDA : ARCHS = 860 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 | 
perplexity: tokenizing the input ..
perplexity: tokenization took 47.038 ms
perplexity: calculating perplexity over 15 chunks, n_ctx=2048, batch_size=2048, n_seq=1
perplexity: 3.33 seconds per pass - ETA 0.82 minutes
[1]5.2674,[2]6.3251,[3]6.7175,[4]6.6683,[5]6.5699,[6]5.6646,[7]5.1615,[8]5.1824,[9]5.4611,[10]5.6068,[11]5.6701,[12]5.9835,[13]6.0591,[14]6.1881,[15]6.2669,
Final estimate: PPL = 6.2669 +/- 0.12736

llama_perf_context_print:        load time =    2661.43 ms
llama_perf_context_print: prompt eval time =   46281.89 ms / 30720 tokens (    1.51 ms per token,   663.76 tokens per second)
llama_perf_context_print:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_perf_context_print:       total time =   46712.49 ms / 30721 tokens
llama_perf_context_print:    graphs reused =          0
llama_memory_breakdown_print: | memory breakdown [MiB] | total    free     self   model   context   compute    unaccounted |
llama_memory_breakdown_print: |   - CUDA0 (RTX 3090)   | 24115 = 16250 + ( 3936 =  3352 +      40 +     544) +        3928 |
llama_memory_breakdown_print: |   - CUDA1 (RTX 3090)   | 24124 = 19998 + ( 3474 =  3352 +      40 +      82) +         651 |
llama_memory_breakdown_print: |   - Host               |                  10061 =  9941 +     112 +       8                |