rabiulawal commited on
Commit
0923aca
·
verified ·
1 Parent(s): 6211a47

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ base_model:
5
+ - mair-lab/sft-simple
6
+ ---
7
+
8
+ # EARL - RL Fine-tuned (S + C) (8B)
9
+
10
+ **Model Name:** `mair-lab/sft-simple.rl-simple-n-complex`
11
+ **Model Size:** 8B parameters
12
+ **Base Checkpoint:** [`mair-lab/sft-simple`](https://huggingface.co/mair-lab/sft-simple)
13
+ **Training Method:** Supervised Fine-Tuning (SFT) on Simple Edits → Reinforcement Learning (RL) on Simple + Complex Edits
14
+ **Datasets:** Simple Edit (S), Complex Edit (C)
15
+
16
+ This model is part of the EARL benchmark study:
17
+ 📄 [EARL: The Promise of RL for Autoregressive Image Editing](https://arxiv.org/abs/2508.01119)
18
+
19
+ ## Model Summary
20
+
21
+ This RL fine-tuned model builds on the SFT-simple checkpoint, using reinforcement learning to improve performance on both simple and complex edit tasks. It’s optimized using a human-aligned reward function across diverse editing instructions.
22
+
23
+ ➡️ **Inference instructions:** [GitHub Repo](https://github.com/saba96/EARL?tab=readme-ov-file)
24
+
25
+ ## Full Benchmark Results
26
+
27
+ | Model | Base Model | OmniEdit | EmuEdit | AURORA | MB | VisMin | I2EBench | **AVG** |
28
+ |---------------------------|------------|----------|---------|--------|------|--------|----------|---------|
29
+ | Magicbrush | SD v1.5 | 3.43 | 3.28 | 3.01 | 3.64 | 3.48 | 3.06 | 3.32 |
30
+ | InstructPix2Pix | SD v1.5 | 3.97 | 3.24 | 3.05 | 3.12 | 2.94 | 3.23 | 3.26 |
31
+ | Aurora | SD v1.5 | 4.50 | 4.40 | 4.12 | 4.62 | 3.82 | 3.58 | 4.17 |
32
+ | Omnigen* | - | 5.68 | 5.00 | 4.10 | 4.68 | 4.09 | 4.68 | 4.70 |
33
+ | **SFT (S)** | Emu3 | 5.73 | 3.66 | 3.58 | 3.19 | 3.57 | 3.59 | 3.88 |
34
+ | **EARL SFT (S) → RL (S+C)** | SFT (S) | **6.39** | 4.47 | **4.27** | 4.52 | 4.93 | 4.19 | **4.80** |
35
+
36
+ > 🚀 **Highlight:** Our RL model outperforms all supervised and diffusion baselines, setting a new state-of-the-art across the EARL benchmark with **4.80 AVG**.
37
+
38
+ ## Use Cases
39
+ - Simple edits of object, attribute, style and environment changes
40
+ - Complex edits of counting, spatial relation and action changes
41
+ - Instruction-following visual transformations