Add files using upload-large-folder tool
Browse files- modeling_brumby.py +159 -43
modeling_brumby.py
CHANGED
|
@@ -21,17 +21,11 @@ import torch
|
|
| 21 |
from torch import nn
|
| 22 |
|
| 23 |
from transformers.activations import ACT2FN
|
| 24 |
-
from transformers.cache_utils import Cache, DynamicCache
|
| 25 |
from transformers.generation import GenerationMixin
|
| 26 |
from transformers.integrations import use_kernel_forward_from_hub
|
| 27 |
-
from transformers.
|
| 28 |
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 29 |
-
from transformers.modeling_layers import (
|
| 30 |
-
GenericForQuestionAnswering,
|
| 31 |
-
GenericForSequenceClassification,
|
| 32 |
-
GenericForTokenClassification,
|
| 33 |
-
GradientCheckpointingLayer,
|
| 34 |
-
)
|
| 35 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 36 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 37 |
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
@@ -377,7 +371,7 @@ class BrumbyAttention(nn.Module):
|
|
| 377 |
return attn_output, attn_weights
|
| 378 |
|
| 379 |
|
| 380 |
-
class BrumbyDecoderLayer(
|
| 381 |
def __init__(self, config: BrumbyConfig, layer_idx: int):
|
| 382 |
super().__init__()
|
| 383 |
self.hidden_size = config.hidden_size
|
|
@@ -529,24 +523,9 @@ class BrumbyModel(BrumbyPreTrainedModel):
|
|
| 529 |
if position_ids is None:
|
| 530 |
position_ids = cache_position.unsqueeze(0)
|
| 531 |
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
mask_kwargs = {
|
| 536 |
-
"config": self.config,
|
| 537 |
-
"input_embeds": inputs_embeds,
|
| 538 |
-
"attention_mask": attention_mask,
|
| 539 |
-
"cache_position": cache_position,
|
| 540 |
-
"past_key_values": past_key_values,
|
| 541 |
-
"position_ids": position_ids,
|
| 542 |
-
}
|
| 543 |
-
# Create the masks
|
| 544 |
-
causal_mask_mapping = {
|
| 545 |
-
"full_attention": create_causal_mask(**mask_kwargs),
|
| 546 |
-
}
|
| 547 |
-
# The sliding window alternating layers are not always activated depending on the config
|
| 548 |
-
if self.has_sliding_layers:
|
| 549 |
-
causal_mask_mapping["sliding_attention"] = create_sliding_window_causal_mask(**mask_kwargs)
|
| 550 |
|
| 551 |
hidden_states = inputs_embeds
|
| 552 |
|
|
@@ -556,7 +535,7 @@ class BrumbyModel(BrumbyPreTrainedModel):
|
|
| 556 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 557 |
hidden_states = decoder_layer(
|
| 558 |
hidden_states,
|
| 559 |
-
attention_mask=
|
| 560 |
position_ids=position_ids,
|
| 561 |
past_key_values=past_key_values,
|
| 562 |
use_cache=use_cache,
|
|
@@ -571,6 +550,158 @@ class BrumbyModel(BrumbyPreTrainedModel):
|
|
| 571 |
past_key_values=past_key_values if use_cache else None,
|
| 572 |
)
|
| 573 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 574 |
|
| 575 |
@auto_docstring
|
| 576 |
class BrumbyForCausalLM(BrumbyPreTrainedModel, GenerationMixin):
|
|
@@ -719,23 +850,8 @@ class BrumbyForCausalLM(BrumbyPreTrainedModel, GenerationMixin):
|
|
| 719 |
)
|
| 720 |
|
| 721 |
|
| 722 |
-
class BrumbyForSequenceClassification(GenericForSequenceClassification, BrumbyPreTrainedModel):
|
| 723 |
-
pass
|
| 724 |
-
|
| 725 |
-
|
| 726 |
-
class BrumbyForTokenClassification(GenericForTokenClassification, BrumbyPreTrainedModel):
|
| 727 |
-
pass
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
class BrumbyForQuestionAnswering(GenericForQuestionAnswering, BrumbyPreTrainedModel):
|
| 731 |
-
base_model_prefix = "transformer" # For BC, where `transformer` was used instead of `model`
|
| 732 |
-
|
| 733 |
-
|
| 734 |
__all__ = [
|
| 735 |
"BrumbyForCausalLM",
|
| 736 |
-
"BrumbyForQuestionAnswering",
|
| 737 |
"BrumbyPreTrainedModel",
|
| 738 |
"BrumbyModel",
|
| 739 |
-
"BrumbyForSequenceClassification",
|
| 740 |
-
"BrumbyForTokenClassification",
|
| 741 |
]
|
|
|
|
| 21 |
from torch import nn
|
| 22 |
|
| 23 |
from transformers.activations import ACT2FN
|
| 24 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache, SlidingWindowCache
|
| 25 |
from transformers.generation import GenerationMixin
|
| 26 |
from transformers.integrations import use_kernel_forward_from_hub
|
| 27 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 28 |
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 30 |
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 31 |
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
|
|
| 371 |
return attn_output, attn_weights
|
| 372 |
|
| 373 |
|
| 374 |
+
class BrumbyDecoderLayer(nn.Module):
|
| 375 |
def __init__(self, config: BrumbyConfig, layer_idx: int):
|
| 376 |
super().__init__()
|
| 377 |
self.hidden_size = config.hidden_size
|
|
|
|
| 523 |
if position_ids is None:
|
| 524 |
position_ids = cache_position.unsqueeze(0)
|
| 525 |
|
| 526 |
+
causal_mask = self._update_causal_mask(
|
| 527 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions=False
|
| 528 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
|
| 530 |
hidden_states = inputs_embeds
|
| 531 |
|
|
|
|
| 535 |
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 536 |
hidden_states = decoder_layer(
|
| 537 |
hidden_states,
|
| 538 |
+
attention_mask=causal_mask,
|
| 539 |
position_ids=position_ids,
|
| 540 |
past_key_values=past_key_values,
|
| 541 |
use_cache=use_cache,
|
|
|
|
| 550 |
past_key_values=past_key_values if use_cache else None,
|
| 551 |
)
|
| 552 |
|
| 553 |
+
def _update_causal_mask(
|
| 554 |
+
self,
|
| 555 |
+
attention_mask: torch.Tensor,
|
| 556 |
+
input_tensor: torch.Tensor,
|
| 557 |
+
cache_position: torch.Tensor,
|
| 558 |
+
past_key_values: Cache,
|
| 559 |
+
output_attentions: bool = False,
|
| 560 |
+
):
|
| 561 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 562 |
+
if attention_mask is not None and past_key_values is not None:
|
| 563 |
+
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
|
| 564 |
+
if is_padding_right:
|
| 565 |
+
raise ValueError(
|
| 566 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 567 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
|
| 568 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 569 |
+
)
|
| 570 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 571 |
+
return attention_mask
|
| 572 |
+
return None
|
| 573 |
+
|
| 574 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 575 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 576 |
+
# to infer the attention mask.
|
| 577 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 578 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 579 |
+
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
|
| 580 |
+
|
| 581 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 582 |
+
if (
|
| 583 |
+
self.config._attn_implementation == "sdpa"
|
| 584 |
+
and not (using_static_cache or using_sliding_window_cache)
|
| 585 |
+
and not output_attentions
|
| 586 |
+
):
|
| 587 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 588 |
+
attention_mask,
|
| 589 |
+
inputs_embeds=input_tensor,
|
| 590 |
+
past_key_values_length=past_seen_tokens,
|
| 591 |
+
sliding_window=self.config.sliding_window,
|
| 592 |
+
is_training=self.training,
|
| 593 |
+
):
|
| 594 |
+
return None
|
| 595 |
+
|
| 596 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 597 |
+
min_dtype = torch.finfo(dtype).min
|
| 598 |
+
sequence_length = input_tensor.shape[1]
|
| 599 |
+
# SlidingWindowCache or StaticCache
|
| 600 |
+
if using_sliding_window_cache or using_static_cache:
|
| 601 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 602 |
+
# DynamicCache or no cache
|
| 603 |
+
else:
|
| 604 |
+
target_length = (
|
| 605 |
+
attention_mask.shape[-1]
|
| 606 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 607 |
+
else past_seen_tokens + sequence_length + 1
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 611 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 612 |
+
attention_mask,
|
| 613 |
+
sequence_length=sequence_length,
|
| 614 |
+
target_length=target_length,
|
| 615 |
+
dtype=dtype,
|
| 616 |
+
device=device,
|
| 617 |
+
cache_position=cache_position,
|
| 618 |
+
batch_size=input_tensor.shape[0],
|
| 619 |
+
config=self.config,
|
| 620 |
+
past_key_values=past_key_values,
|
| 621 |
+
)
|
| 622 |
+
|
| 623 |
+
if (
|
| 624 |
+
self.config._attn_implementation == "sdpa"
|
| 625 |
+
and attention_mask is not None
|
| 626 |
+
and attention_mask.device.type in ["cuda", "xpu"]
|
| 627 |
+
and not output_attentions
|
| 628 |
+
):
|
| 629 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 630 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 631 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 632 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 633 |
+
|
| 634 |
+
return causal_mask
|
| 635 |
+
|
| 636 |
+
@staticmethod
|
| 637 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 638 |
+
attention_mask: torch.Tensor,
|
| 639 |
+
sequence_length: int,
|
| 640 |
+
target_length: int,
|
| 641 |
+
dtype: torch.dtype,
|
| 642 |
+
device: torch.device,
|
| 643 |
+
cache_position: torch.Tensor,
|
| 644 |
+
batch_size: int,
|
| 645 |
+
config: BrumbyConfig,
|
| 646 |
+
past_key_values: Cache,
|
| 647 |
+
):
|
| 648 |
+
"""
|
| 649 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 650 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 651 |
+
|
| 652 |
+
Args:
|
| 653 |
+
attention_mask (`torch.Tensor`):
|
| 654 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 655 |
+
sequence_length (`int`):
|
| 656 |
+
The sequence length being processed.
|
| 657 |
+
target_length (`int`):
|
| 658 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 659 |
+
dtype (`torch.dtype`):
|
| 660 |
+
The dtype to use for the 4D attention mask.
|
| 661 |
+
device (`torch.device`):
|
| 662 |
+
The device to place the 4D attention mask on.
|
| 663 |
+
cache_position (`torch.Tensor`):
|
| 664 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 665 |
+
batch_size (`torch.Tensor`):
|
| 666 |
+
Batch size.
|
| 667 |
+
config (`Qwen3Config`):
|
| 668 |
+
The model's configuration class
|
| 669 |
+
past_key_values (`Cache`):
|
| 670 |
+
The cache class that is being used currently to generate
|
| 671 |
+
"""
|
| 672 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 673 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 674 |
+
causal_mask = attention_mask
|
| 675 |
+
else:
|
| 676 |
+
min_dtype = torch.finfo(dtype).min
|
| 677 |
+
causal_mask = torch.full(
|
| 678 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 679 |
+
)
|
| 680 |
+
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 681 |
+
if config.sliding_window is not None:
|
| 682 |
+
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
| 683 |
+
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
| 684 |
+
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
| 685 |
+
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
| 686 |
+
cache_position.reshape(-1, 1) - config.sliding_window
|
| 687 |
+
)
|
| 688 |
+
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
| 689 |
+
causal_mask *= diagonal_attend_mask
|
| 690 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 691 |
+
if attention_mask is not None:
|
| 692 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 693 |
+
if attention_mask.shape[-1] > target_length:
|
| 694 |
+
attention_mask = attention_mask[:, :target_length]
|
| 695 |
+
mask_length = attention_mask.shape[-1]
|
| 696 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
| 697 |
+
causal_mask.device
|
| 698 |
+
)
|
| 699 |
+
padding_mask = padding_mask == 0
|
| 700 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 701 |
+
padding_mask, min_dtype
|
| 702 |
+
)
|
| 703 |
+
return causal_mask
|
| 704 |
+
|
| 705 |
|
| 706 |
@auto_docstring
|
| 707 |
class BrumbyForCausalLM(BrumbyPreTrainedModel, GenerationMixin):
|
|
|
|
| 850 |
)
|
| 851 |
|
| 852 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 853 |
__all__ = [
|
| 854 |
"BrumbyForCausalLM",
|
|
|
|
| 855 |
"BrumbyPreTrainedModel",
|
| 856 |
"BrumbyModel",
|
|
|
|
|
|
|
| 857 |
]
|