Upload processor
Browse files- preprocessor_config.json +1 -1
- processing_colqwen2.py +150 -0
- processor_config.json +6 -0
- tokenizer_config.json +1 -1
preprocessor_config.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
"auto_map": {
|
| 3 |
-
"AutoProcessor": "
|
| 4 |
},
|
| 5 |
"do_convert_rgb": true,
|
| 6 |
"do_normalize": true,
|
|
|
|
| 1 |
{
|
| 2 |
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_colqwen2.ColQwen2Processor"
|
| 4 |
},
|
| 5 |
"do_convert_rgb": true,
|
| 6 |
"do_normalize": true,
|
processing_colqwen2.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import List, Optional, Union
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import BatchFeature
|
| 7 |
+
from transformers.models.qwen2_vl import Qwen2VLProcessor
|
| 8 |
+
|
| 9 |
+
from colpali_engine.utils.processing_utils import BaseVisualRetrieverProcessor
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ColQwen2Processor(BaseVisualRetrieverProcessor, Qwen2VLProcessor):
|
| 13 |
+
"""
|
| 14 |
+
Processor for ColQwen2.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
def __init__(self, *args, **kwargs):
|
| 18 |
+
super().__init__(*args, **kwargs)
|
| 19 |
+
self.tokenizer.padding_side = "left"
|
| 20 |
+
self.min_pixels = 4 * 28 * 28
|
| 21 |
+
self.max_pixels = 768 * 28 * 28
|
| 22 |
+
self.factor = 28
|
| 23 |
+
self.max_ratio = 200
|
| 24 |
+
|
| 25 |
+
@staticmethod
|
| 26 |
+
def round_by_factor(number: float, factor: int) -> int:
|
| 27 |
+
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
|
| 28 |
+
return round(number / factor) * factor
|
| 29 |
+
|
| 30 |
+
@staticmethod
|
| 31 |
+
def ceil_by_factor(number: float, factor: int) -> int:
|
| 32 |
+
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
|
| 33 |
+
return math.ceil(number / factor) * factor
|
| 34 |
+
|
| 35 |
+
@staticmethod
|
| 36 |
+
def floor_by_factor(number: float, factor: int) -> int:
|
| 37 |
+
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
|
| 38 |
+
return math.floor(number / factor) * factor
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def smart_resize(self, height: int, width: int, factor: int, min_pixels: int, max_pixels: int) -> tuple[int, int]:
|
| 42 |
+
"""
|
| 43 |
+
Rescales the image so that the following conditions are met:
|
| 44 |
+
|
| 45 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 46 |
+
|
| 47 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 48 |
+
|
| 49 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 50 |
+
"""
|
| 51 |
+
if max(height, width) / min(height, width) > self.max_ratio:
|
| 52 |
+
raise ValueError(
|
| 53 |
+
f"absolute aspect ratio must be smaller than {self.max_ratio}, "
|
| 54 |
+
f"got {max(height, width) / min(height, width)}"
|
| 55 |
+
)
|
| 56 |
+
h_bar = max(factor, self.round_by_factor(height, factor))
|
| 57 |
+
w_bar = max(factor, self.round_by_factor(width, factor))
|
| 58 |
+
if h_bar * w_bar > max_pixels:
|
| 59 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 60 |
+
h_bar = self.floor_by_factor(height / beta, factor)
|
| 61 |
+
w_bar = self.floor_by_factor(width / beta, factor)
|
| 62 |
+
elif h_bar * w_bar < min_pixels:
|
| 63 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 64 |
+
h_bar = self.ceil_by_factor(height * beta, factor)
|
| 65 |
+
w_bar = self.ceil_by_factor(width * beta, factor)
|
| 66 |
+
return h_bar, w_bar
|
| 67 |
+
|
| 68 |
+
def process_images(
|
| 69 |
+
self,
|
| 70 |
+
images: List[Image.Image],
|
| 71 |
+
) -> BatchFeature:
|
| 72 |
+
"""
|
| 73 |
+
Process images for ColPali.
|
| 74 |
+
"""
|
| 75 |
+
texts_doc = (["<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"]
|
| 76 |
+
* len(images))
|
| 77 |
+
|
| 78 |
+
def resize_and_convert(image: Image.Image) -> Image.Image:
|
| 79 |
+
image_size = image.size
|
| 80 |
+
resized_height, resized_width = self.smart_resize(image_size[1],
|
| 81 |
+
image_size[0],
|
| 82 |
+
factor=self.factor,
|
| 83 |
+
min_pixels=self.min_pixels,
|
| 84 |
+
max_pixels=self.max_pixels)
|
| 85 |
+
# print(f"Resizing image from {image_size} to {(resized_height, resized_width)}")
|
| 86 |
+
return image.convert("RGB").resize((resized_width, resized_height))
|
| 87 |
+
|
| 88 |
+
images = [resize_and_convert(image) for image in images]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
batch_doc = self(
|
| 92 |
+
text=texts_doc,
|
| 93 |
+
images=images,
|
| 94 |
+
padding="longest",
|
| 95 |
+
return_tensors="pt"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
|
| 100 |
+
offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
|
| 101 |
+
# separate pixel_values for each image
|
| 102 |
+
pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())
|
| 103 |
+
# pad pixel_values to the same length to be able to make it into a tensor
|
| 104 |
+
max_length = max([len(pv) for pv in pixel_values])
|
| 105 |
+
pixel_values = [torch.cat([pv,
|
| 106 |
+
torch.zeros((max_length - len(pv), pv.shape[1]),
|
| 107 |
+
dtype=pv.dtype, device=pv.device)]) for pv in pixel_values]
|
| 108 |
+
batch_doc["pixel_values"] = torch.stack(pixel_values)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
return batch_doc
|
| 112 |
+
|
| 113 |
+
def process_queries(
|
| 114 |
+
self,
|
| 115 |
+
queries: List[str],
|
| 116 |
+
max_length: int = 50,
|
| 117 |
+
suffix: Optional[str] = None,
|
| 118 |
+
) -> BatchFeature:
|
| 119 |
+
"""
|
| 120 |
+
Process queries for ColPali.
|
| 121 |
+
"""
|
| 122 |
+
if suffix is None:
|
| 123 |
+
suffix = "<pad>" * 10
|
| 124 |
+
texts_query: List[str] = []
|
| 125 |
+
|
| 126 |
+
for query in queries:
|
| 127 |
+
query = f"Query: {query}"
|
| 128 |
+
query += suffix # add suffix (pad tokens)
|
| 129 |
+
texts_query.append(query)
|
| 130 |
+
|
| 131 |
+
batch_query = self(
|
| 132 |
+
text=texts_query,
|
| 133 |
+
return_tensors="pt",
|
| 134 |
+
padding="longest",
|
| 135 |
+
# max_length=max_length + self.image_seq_length,
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return batch_query
|
| 139 |
+
|
| 140 |
+
def score(
|
| 141 |
+
self,
|
| 142 |
+
qs: List[torch.Tensor],
|
| 143 |
+
ps: List[torch.Tensor],
|
| 144 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 145 |
+
**kwargs,
|
| 146 |
+
) -> torch.Tensor:
|
| 147 |
+
"""
|
| 148 |
+
Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
|
| 149 |
+
"""
|
| 150 |
+
return self.score_multi_vector(qs, ps, device=device, **kwargs)
|
processor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoProcessor": "processing_colqwen2.ColQwen2Processor"
|
| 4 |
+
},
|
| 5 |
+
"processor_class": "ColQwen2Processor"
|
| 6 |
+
}
|
tokenizer_config.json
CHANGED
|
@@ -130,7 +130,7 @@
|
|
| 130 |
"<|video_pad|>"
|
| 131 |
],
|
| 132 |
"auto_map": {
|
| 133 |
-
"AutoProcessor": "
|
| 134 |
},
|
| 135 |
"bos_token": null,
|
| 136 |
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
|
|
|
| 130 |
"<|video_pad|>"
|
| 131 |
],
|
| 132 |
"auto_map": {
|
| 133 |
+
"AutoProcessor": "processing_colqwen2.ColQwen2Processor"
|
| 134 |
},
|
| 135 |
"bos_token": null,
|
| 136 |
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|