File size: 3,304 Bytes
03423b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
library_name: peft
license: cc-by-nc-4.0
base_model: CohereLabs/aya-expanse-8b
tags:
- generated_from_trainer
datasets:
- matrixportal/turkish_medical_alpaca
model-index:
- name: outputs/lora-out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.1`
```yaml
adapter: qlora
base_model: CohereLabs/aya-expanse-8b
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: matrixportal/turkish_medical_alpaca
  type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: true
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
learning_rate: 3e-5
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 1
model_type: CohereForCausalLM
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sdp_attention: true
sequence_len: 2048
special_tokens:
  bos_token: <BOS_TOKEN>
  eos_token: <|END_OF_TURN_TOKEN|>
  unk_token: <PAD>
strict: false
tf32: false
tokens:
- <|START_OF_TURN_TOKEN|>
- <|END_OF_TURN_TOKEN|>
train_on_inputs: false
val_set_size: 0.05
wandb_entity: matrixportalx-none
wandb_log_model: all
wandb_name: aya-turkish-medical
wandb_project: matrixportalx-none
wandb_watch: gradients
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# outputs/lora-out

This model is a fine-tuned version of [CohereLabs/aya-expanse-8b](https://huggingface.co/CohereLabs/aya-expanse-8b) on the matrixportal/turkish_medical_alpaca dataset.
It achieves the following results on the evaluation set:
- Loss: 6.7830

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2
- training_steps: 50

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.0385        | 0.0172 | 50   | 6.7830          |


### Framework versions

- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1