Improve model card: Add paper link, pipeline tag, specific license, and sample usage (#3)
Browse files- Improve model card: Add paper link, pipeline tag, specific license, and sample usage (656984de2f31020d04db0098dab96221323220f8)
Co-authored-by: Niels Rogge <[email protected]>
    	
        README.md
    CHANGED
    
    | 
         @@ -1,19 +1,29 @@ 
     | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
            -
            license: cc-by-4.0
         
     | 
| 3 | 
         
             
            language:
         
     | 
| 4 | 
         
             
            - en
         
     | 
| 
         | 
|
| 5 | 
         
             
            tags:
         
     | 
| 6 | 
         
             
            - ecg
         
     | 
| 7 | 
         
             
            - student-teacher
         
     | 
| 8 | 
         
             
            - echocardiograms
         
     | 
| 
         | 
|
| 
         | 
|
| 9 | 
         
             
            ---
         
     | 
| 10 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 11 | 
         | 
| 12 | 
         
             
            EchoingECG is a probabilistic student-teacher model designed to improve cardiac function prediction from electrocardiograms (ECGs) by distilling knowledge from echocardiograms (ECHO). This approach leverages uncertainty-aware ECG embeddings and ECHO supervision, integrating Probabilistic Cross-Modal Embeddings (PCME++) and ECHO-CLIP, a vision-language pretrained model, to transfer ECHO knowledge into ECG representations.
         
     | 
| 13 | 
         | 
| 14 | 
         
            -
             
     | 
| 15 | 
         | 
| 16 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 17 | 
         | 
| 18 | 
         
             
            ## Installation
         
     | 
| 19 | 
         
             
            Clone the repository and install dependencies:
         
     | 
| 
         @@ -23,6 +33,62 @@ cd EchoingECG 
     | 
|
| 23 | 
         
             
            pip install -r requirements.txt
         
     | 
| 24 | 
         
             
            ```
         
     | 
| 25 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 26 | 
         
             
            ## Citation
         
     | 
| 27 | 
         
             
            If you use EchoingECG in your research, please cite:
         
     | 
| 28 | 
         
             
            ```
         
     | 
| 
         | 
|
| 1 | 
         
             
            ---
         
     | 
| 
         | 
|
| 2 | 
         
             
            language:
         
     | 
| 3 | 
         
             
            - en
         
     | 
| 4 | 
         
            +
            license: cc-by-nc-nd-4.0
         
     | 
| 5 | 
         
             
            tags:
         
     | 
| 6 | 
         
             
            - ecg
         
     | 
| 7 | 
         
             
            - student-teacher
         
     | 
| 8 | 
         
             
            - echocardiograms
         
     | 
| 9 | 
         
            +
            - medical
         
     | 
| 10 | 
         
            +
            pipeline_tag: other
         
     | 
| 11 | 
         
             
            ---
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            # EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            The model was presented in the paper [EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks](https://huggingface.co/papers/2509.25791).
         
     | 
| 16 | 
         | 
| 17 | 
         
             
            EchoingECG is a probabilistic student-teacher model designed to improve cardiac function prediction from electrocardiograms (ECGs) by distilling knowledge from echocardiograms (ECHO). This approach leverages uncertainty-aware ECG embeddings and ECHO supervision, integrating Probabilistic Cross-Modal Embeddings (PCME++) and ECHO-CLIP, a vision-language pretrained model, to transfer ECHO knowledge into ECG representations.
         
     | 
| 18 | 
         | 
| 19 | 
         
            +
            You can find the official code and further details on our [GitHub repository](https://github.com/mcintoshML/EchoingECG).
         
     | 
| 20 | 
         | 
| 21 | 
         
            +
            ## Features
         
     | 
| 22 | 
         
            +
            - ECHO-CLIP knowledge distillation
         
     | 
| 23 | 
         
            +
            - Probabilistic contrastive learning with PCME++
         
     | 
| 24 | 
         
            +
            - Outperforms state-of-the-art ECG models for ECHO prediction
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            
         
     | 
| 27 | 
         | 
| 28 | 
         
             
            ## Installation
         
     | 
| 29 | 
         
             
            Clone the repository and install dependencies:
         
     | 
| 
         | 
|
| 33 | 
         
             
            pip install -r requirements.txt
         
     | 
| 34 | 
         
             
            ```
         
     | 
| 35 | 
         | 
| 36 | 
         
            +
            ## Quick Start: Run EchoingECG in Jupyter Notebook
         
     | 
| 37 | 
         
            +
            Below is an example workflow using the provided demo notebook:
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            ```python
         
     | 
| 40 | 
         
            +
            import sys
         
     | 
| 41 | 
         
            +
            import yaml
         
     | 
| 42 | 
         
            +
            import torch
         
     | 
| 43 | 
         
            +
            from src.model.echoingecg_model import EchoingECG
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            # Load model config
         
     | 
| 46 | 
         
            +
            with open("src/configs/model.yaml") as f:
         
     | 
| 47 | 
         
            +
                model_cfg = yaml.safe_load(f)
         
     | 
| 48 | 
         
            +
            model = EchoingECG(model_cfg)
         
     | 
| 49 | 
         
            +
            model_weights = torch.load("echoingecg.pt", weights_only=True, map_location="cpu")
         
     | 
| 50 | 
         
            +
            model.load_state_dict(model_weights)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            # Example ECG input
         
     | 
| 53 | 
         
            +
            dummy_ecg = torch.zeros((1, 12, 1000)) # 10 seconds at 100Hz, 12 leads
         
     | 
| 54 | 
         
            +
            input = {"ecg": dummy_ecg}
         
     | 
| 55 | 
         
            +
            output = model(input)
         
     | 
| 56 | 
         
            +
            print(output["ecg"].keys()) # 'mean' and 'std' (probabilistic)
         
     | 
| 57 | 
         
            +
            print(output["ecg"]["mean"].shape, output["ecg"]["std"].shape)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            # Example text input
         
     | 
| 60 | 
         
            +
            from transformers import AutoTokenizer
         
     | 
| 61 | 
         
            +
            text_example = "ecg is normal"
         
     | 
| 62 | 
         
            +
            tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1", return_pt=True)
         
     | 
| 63 | 
         
            +
            tok_dict = tokenizer(text_example)
         
     | 
| 64 | 
         
            +
            input_model = {
         
     | 
| 65 | 
         
            +
                "text": torch.tensor(tok_dict["input_ids"]).unsqueeze(0),
         
     | 
| 66 | 
         
            +
                "attention_mask": torch.tensor(tok_dict["attention_mask"]).unsqueeze(0)
         
     | 
| 67 | 
         
            +
            }
         
     | 
| 68 | 
         
            +
            output = model(input_model)
         
     | 
| 69 | 
         
            +
            print(output["text"].keys()) # 'mean' and 'std'
         
     | 
| 70 | 
         
            +
            print(output["text"]["mean"].shape, output["text"]["std"].shape)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            # Load and scale an ECG properly
         
     | 
| 73 | 
         
            +
            from src.datasets.helpers import scale_ecg
         
     | 
| 74 | 
         
            +
            import joblib
         
     | 
| 75 | 
         
            +
            import numpy as np
         
     | 
| 76 | 
         
            +
            sc = joblib.load("ecg_scaler.pkl")
         
     | 
| 77 | 
         
            +
            _center = torch.from_numpy(sc.mean_.astype(np.float32))
         
     | 
| 78 | 
         
            +
            _scale = torch.from_numpy(sc.scale_.astype(np.float32)).clamp_min(1e-8)
         
     | 
| 79 | 
         
            +
            dummy_ecg = torch.zeros((1,12,1000))
         
     | 
| 80 | 
         
            +
            scaled_output = scale_ecg(_center, _scale, dummy_ecg)
         
     | 
| 81 | 
         
            +
            ```
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            ## License
         
     | 
| 84 | 
         
            +
            This work is licensed under the **Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)**.
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            You may share this work for non-commercial purposes, with proper attribution, but you may not modify it or use it commercially.
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            [](https://creativecommons.org/licenses/by-nc-nd/4.0/)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            [View Full License Details](https://creativecommons.org/licenses/by-nc-nd/4.0/)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
             
            ## Citation
         
     | 
| 93 | 
         
             
            If you use EchoingECG in your research, please cite:
         
     | 
| 94 | 
         
             
            ```
         
     |