File size: 9,737 Bytes
			
			| 2e36eb5 a069992 2e36eb5 0fa4b19 2e36eb5 d9e8fc2 2e36eb5 0fa4b19 2e36eb5 0321785 2e36eb5 0321785 2e36eb5 476eef0 309f3e3 0a6f780 2e36eb5 b788cf7 2e36eb5 0321785 2e36eb5 0321785 887dce3 d9e8fc2 887dce3 0321785 c1b36d7 2e36eb5 603066f 2e36eb5 603066f 2e36eb5 603066f 2e36eb5 0321785 59198d6 0321785 2e36eb5 59198d6 2e36eb5 5c56dc6 2e36eb5 16cac4e 408a48a d133492 482c886 2e36eb5 5c56dc6 0a6f780 2e36eb5 c1b36d7 2e36eb5 c1b36d7 2e36eb5 9021234 2e36eb5 9021234 c1b36d7 9021234 c1b36d7 9021234 c1b36d7 9021234 2e36eb5 9021234 c1b36d7 9021234 c1b36d7 9021234 59198d6 9021234 c1b36d7 d9e8fc2 2e36eb5 0a6f780 c1b36d7 0a6f780 2e36eb5 59198d6 c1b36d7 d9e8fc2 c1b36d7 2e36eb5 d9e8fc2 72799cb 5c56dc6 72799cb | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | ---
library_name: transformers
license: apache-2.0
datasets:
- tech4humans/signature-detection
base_model:
- hustvl/yolos-tiny
---
# YOLOS (tiny-sized) Model For Handwritten Signature Detection
YOLOS model finetuned to detect handwritten signatures in document images using [[tech4humans/signature-detection](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md.svg)](https://huggingface.co/datasets/tech4humans/signature-detection) dataset.
Original YOLOS was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). 
## Model description
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
- **Finetuned by:** [Mario DEFRANCE](www.linkedin.com/in/mario-defrance)
- **Repository:** [mdefrance/signature-detection](https://github.com/mdefrance/signature-detection/tree/yolos-tiny-signature-detection)
- **Model type:** [YOLOS](https://huggingface.co/docs/transformers/model_doc/yolos)
- **License:** Apache 2.0 license
- **Finetuned from model** [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
## Uses
This model is designed for detecting handwritten signatures in scanned documents, contracts, or forms.
You can try it instantly in your browser here:
[](https://huggingface.co/spaces/mdefrance/signature-detection-demo)
### Direct Use
Here is how to use this model:
```python
from datasets import load_dataset
from transformers import pipeline
# Load the tech4humans signature dataset
dataset = load_dataset("samuellimabraz/signature-detection")
# Load the finetuned model
yolos = pipeline(
    task="object-detection",
    model="mdefrance/yolos-tiny-signature-detection",
    device_map="auto",
)
# Inference on test sample
prediction = yolos(dataset["test"][0].get("image"))
```
Currently, both the image processor and model support PyTorch. 
### Out-of-Scope Use
- **Fraudulent Use:** This model must not be used for forging signatures or any illegal activity. It’s meant for legitimate signature detection in documents.
- **Other Objects:** Not suitable for detecting non-signature elements in documents.
- **Critical Decisions:** Should not be solely relied on for high-stakes decisions (e.g., legal or financial) without human validation.
## Bias, Risks, and Limitations
- **Bias:** May not generalize well if training data lacks diversity in signature styles or cultural context.
- **Risks:** False positives/negatives can occur, impacting document validation.
- **Limitations:** Performance may degrade on poor-quality images or in challenging visual conditions (e.g., noise, lighting).
### Recommendations
- **Improve Training Data:** Fine-tune with diverse and representative samples to reduce bias.
- **Human Oversight:** Always include a human review step for critical use cases.
- **Image Quality:** Use clean, high-resolution images; apply preprocessing if needed.
- **Ethical Use:** Follow legal and ethical standards, ensuring privacy and responsible deployment.
## Training Details
### Training Data
<table>
  <tr>
    <td style="text-align: center; padding: 10px;">
      <a href="https://huggingface.co/datasets/tech4humans/signature-detection">
        <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md-dark.svg" alt="Dataset on HF">
      </a>
    </td>
  </tr>
</table>
The training utilized a dataset built from two public datasets: [Tobacco800](https://paperswithcode.com/dataset/tobacco-800) and [signatures-xc8up](https://universe.roboflow.com/roboflow-100/signatures-xc8up), unified and processed in [Roboflow](https://roboflow.com/).
The processed dataset was created by [Samuel Lima Braz](https://huggingface.co/samuellimabraz), and all credit for the dataset preparation goes to him.
**Dataset Summary:**
- Training: 1,980 images (70%)
- Validation: 420 images (15%)
- Testing: 419 images (15%)
- Format: COCO JSON
- Resolution: 640x640 pixels
### Training Procedure
See [mdefrance/signature-detection](https://github.com/mdefrance/signature-detection/tree/yolos-tiny-signature-detection) for details on training procedure.
#### Metrics
Performances computed on the testing set:
| **Metric**                      | [yolos-base-signature-detection](https://huggingface.co/mdefrance/yolos-base-signature-detection) | [yolos-small-signature-detection](https://huggingface.co/mdefrance/yolos-small-signature-detection) | [yolos-tiny-signature-detection](https://huggingface.co/mdefrance/yolos-tiny-signature-detection) | 
|:--------------------------------|------------:|-----------:|-----------------------------:|
| **Inference Time - CPU (s)**    |    2.250    |      0.787 |                   **0.262**  |
| **Inference Time - GPU (s)**    |     1.464   |      0.023 |                   **0.014**  |
| **Parameters**                  |   127.73M   |     30.65M |                        6.47M |
| **mAP50**                       |   **0.887** |      0.859 |                        0.856 |
| **mAP50-95**                    |   **0.495** |      0.419 |                        0.395 |
Inference times are computed on a laptop with following specs:
* CPU: Intel Core i7-9750H
* GPU: NVIDIA GeForce GTX 1650
## License Comparison
### GNU Affero General Public License v3.0 (AGPL-3.0)
AGPL-3.0 is a strong copyleft license designed to keep software and its modifications open-source, especially for web apps and network services.
- **Strong Copyleft**: Modified versions must also be AGPL-licensed.
- **Network Use**: Users must get the source code, even if they only interact with the software over a network.
- **Commercial Use**: Allowed, but any changes must be shared under AGPL-3.0.
- **Patent Protection**: Includes safeguards against patent and trademark claims.
### Apache License 2.0
Apache 2.0 is a permissive license that offers flexibility for both open-source and proprietary use.
- **Permissive**: Modifications and derivatives don’t need to be open-source.
- **Commercial Use**: Fully allowed with no requirement to share changes.
- **Patent Protection**: Includes strong patent clauses.
- **Compatibility**: Easy to combine with other licenses and projects.
### Summary: Why Apache 2.0 Offers More Flexibility
While AGPL-3.0 ensures openness, Apache 2.0 is better suited for businesses and closed-source use:
- No obligation to disclose modified code.
- Easier to integrate into proprietary systems.
- More flexible for commercial applications.
For full license texts, see:
- [GNU AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html)
- [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation
This model is a finetuned version of the YOLOS model introduced in the following paper. If you use this model, please cite the original work:
**BibTeX:**
```bibtex
@article{DBLP:journals/corr/abs-2106-00666,
  author    = {Yuxin Fang and
               Bencheng Liao and
               Xinggang Wang and
               Jiemin Fang and
               Jiyang Qi and
               Rui Wu and
               Jianwei Niu and
               Wenyu Liu},
  title     = {You Only Look at One Sequence: Rethinking Transformer in Vision through
               Object Detection},
  journal   = {CoRR},
  volume    = {abs/2106.00666},
  year      = {2021},
  url       = {https://arxiv.org/abs/2106.00666},
  eprinttype = {arXiv},
  eprint    = {2106.00666},
  timestamp = {Fri, 29 Apr 2022 19:49:16 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Additional Resources 
- **Blog post of comparison of Signature Detection Models:** [Hugging Face Blog](https://huggingface.co/blog/samuellimabraz/signature-detection-model)
- **Blog post associated Finetuning Notebook:** [Google Colab Notebook](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix)
- **Finetuning of YOLOS Notebook Example:** [Google Colab Notebook](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/YOLOS/Fine_tuning_YOLOS_for_object_detection_on_custom_dataset_(balloon).ipynb)
## Acknowledgements
This model is finetuned for handwritten signature detection using the [[tech4humans/signature-detection](https://huggingface.co/datasets/huggingface/badges/resolve/main/dataset-on-hf-md.svg)](https://huggingface.co/datasets/tech4humans/signature-detection) Dataset. The finetuning process and additional resources can be found in the GitHub Repository [mdefrance/signature-detection](https://github.com/mdefrance/signature-detection/tree/yolos-tiny-signature-detection).
## **Author**
<div align="center">
  <table>
    <tr>
      <td align="center" width="140">
        <a href="https://huggingface.co/mdefrance">
          <img src="https://avatars.githubusercontent.com/u/74489838?v=4" width="120" alt="Mario DEFRANCE"/>
          <h3>Mario DEFRANCE</h3>
        </a>
        <p><i>Data Scientist / AI Engineer</i></p>
      </td>
      <td width="500">
        <h4>Responsibilities in this Project</h4>
        <ul>
          <li>🔬 Model development and training</li>
          <li>⚙️ Performance evaluation</li>
          <li>📝 Technical documentation and model card</li>
        </ul>
      </td>
    </tr>
  </table>
</div> | 
