---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:222635
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: OMBRELLAS
sentences:
- '''ALPHASORT, to sort into alphabetic order [v]'''
- '''OMBRELLA, an umbrella [n]'''
- '''PHYLLID, the leaf of a liverwort or moss [n]'''
- source_sentence: ROUNCE
sentences:
- '''LYMPHADENITIS, inflammation of the lymph nodes [n]'''
- '''one who advocates curialism, the system of government of curia [n -S]'''
- '''part of a hand printing press [n -S]'''
- source_sentence: SEROON
sentences:
- '''(Spanish) a crate or hamper; a bale wrapped in hide, also CEROON, SERON [n
-S]'''
- '''a white crystalline soluble phenol used as a photographic developer [n -S]'''
- '''serving to disseminate [adj]'''
- source_sentence: BLAFF
sentences:
- '''to bark [v -ED, -ING, -S]'''
- '''RAZORCLAM, a lamellibranch mollusc with a shell like an old-fashioned razor
handle, also RAZORFISH [n]'''
- '''HYPERCORRECT, refers to a linguistic construction or pronunciation produced
by mistaken analogy with standard usage out of a desire to be correct, such as
"open widely" or "on behalf of my wife and I" [adv]'''
- source_sentence: TRAUMATOLOGY
sentences:
- '''FELLATRIX, a female who fellates [n]'''
- '''pertaining to a grandparent [adj]'''
- '''the study of wounds and their effects [n TRAUMATOLOGIES]'''
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dictionary test
type: dictionary-test
metrics:
- type: cosine_accuracy@1
value: 0.6825254231197672
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8121384167594955
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.831147364260304
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.850587516619354
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6825254231197672
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27071280558649846
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1662294728520608
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08505875166193541
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6825254231197672
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8121384167594955
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.831147364260304
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.850587516619354
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7750717041193917
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7499954655044675
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7522443165977887
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/huggingface/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mehularora/scrabble-embed-v2")
# Run inference
sentences = [
'TRAUMATOLOGY',
"'the study of wounds and their effects [n TRAUMATOLOGIES]'",
"'FELLATRIX, a female who fellates [n]'",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7472, 0.0801],
# [0.7472, 1.0000, 0.2525],
# [0.0801, 0.2525, 1.0000]])
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dictionary-test`
* Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6825 |
| cosine_accuracy@3 | 0.8121 |
| cosine_accuracy@5 | 0.8311 |
| cosine_accuracy@10 | 0.8506 |
| cosine_precision@1 | 0.6825 |
| cosine_precision@3 | 0.2707 |
| cosine_precision@5 | 0.1662 |
| cosine_precision@10 | 0.0851 |
| cosine_recall@1 | 0.6825 |
| cosine_recall@3 | 0.8121 |
| cosine_recall@5 | 0.8311 |
| cosine_recall@10 | 0.8506 |
| **cosine_ndcg@10** | **0.7751** |
| cosine_mrr@10 | 0.75 |
| cosine_map@100 | 0.7522 |
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 222,635 training samples
* Columns: word and definition
* Approximate statistics based on the first 1000 samples:
| | word | definition |
|:--------|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
LICHGATES | 'LICHGATE, the roofed gate of a churchyard, also LYCHGATE [n]' |
| MOULDING | 'a long, narrow strip used to decorate a surface, also MOLDING [n -S]' |
| PARABAPTISM | 'uncanonical baptism [n -S]' |
* Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256
],
"matryoshka_weights": [
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `fp16`: True
#### All Hyperparameters