Upload Gemma3n_Fine_tuning_on_All_Modalities.ipynb
Browse files
Gemma3n_Fine_tuning_on_All_Modalities.ipynb
ADDED
|
@@ -0,0 +1,1766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"source": [
|
| 6 |
+
"# Fine-tune Gemma3n on FineVideo\n",
|
| 7 |
+
"\n",
|
| 8 |
+
"In this notebook, we will see how to fine-tune Gemma3n an videos with audios inside.\n",
|
| 9 |
+
"Using all three modalities is very costly compute-wise, so keep in mind that this is an educational tutorial to fit the model in 40GB VRAM."
|
| 10 |
+
],
|
| 11 |
+
"metadata": {
|
| 12 |
+
"id": "0eVo7Mc5GMyL"
|
| 13 |
+
}
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 1,
|
| 18 |
+
"metadata": {
|
| 19 |
+
"id": "BLv-NJRZzHiA",
|
| 20 |
+
"colab": {
|
| 21 |
+
"base_uri": "https://localhost:8080/"
|
| 22 |
+
},
|
| 23 |
+
"outputId": "bb4e4b32-5000-42e0-889d-90648e335a41"
|
| 24 |
+
},
|
| 25 |
+
"outputs": [
|
| 26 |
+
{
|
| 27 |
+
"output_type": "stream",
|
| 28 |
+
"name": "stdout",
|
| 29 |
+
"text": [
|
| 30 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.9/40.9 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 31 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m10.8/10.8 MB\u001b[0m \u001b[31m114.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 32 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m376.2/376.2 kB\u001b[0m \u001b[31m33.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 33 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m494.8/494.8 kB\u001b[0m \u001b[31m38.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 34 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m193.6/193.6 kB\u001b[0m \u001b[31m17.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 35 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m363.4/363.4 MB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 36 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.8/13.8 MB\u001b[0m \u001b[31m126.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 37 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m24.6/24.6 MB\u001b[0m \u001b[31m92.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 38 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m883.7/883.7 kB\u001b[0m \u001b[31m58.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 39 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 40 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.5/211.5 MB\u001b[0m \u001b[31m11.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 41 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.3/56.3 MB\u001b[0m \u001b[31m42.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 42 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m127.9/127.9 MB\u001b[0m \u001b[31m19.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 43 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m207.5/207.5 MB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 44 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.1/21.1 MB\u001b[0m \u001b[31m114.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
| 45 |
+
"\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
|
| 46 |
+
"gcsfs 2025.3.2 requires fsspec==2025.3.2, but you have fsspec 2025.3.0 which is incompatible.\u001b[0m\u001b[31m\n",
|
| 47 |
+
"\u001b[0m"
|
| 48 |
+
]
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"source": [
|
| 52 |
+
"!pip install -U -q timm transformers trl peft datasets"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 2,
|
| 58 |
+
"metadata": {
|
| 59 |
+
"id": "UxE2vzKsbov0"
|
| 60 |
+
},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"import io\n",
|
| 64 |
+
"import os\n",
|
| 65 |
+
"import zipfile\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"import torch\n",
|
| 68 |
+
"from datasets import load_dataset\n",
|
| 69 |
+
"from PIL import Image\n",
|
| 70 |
+
"from transformers import AutoProcessor, Gemma3nForConditionalGeneration\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"from trl import (\n",
|
| 73 |
+
" SFTConfig,\n",
|
| 74 |
+
" SFTTrainer,\n",
|
| 75 |
+
")"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "markdown",
|
| 80 |
+
"metadata": {
|
| 81 |
+
"id": "T06yJvcMiqO6"
|
| 82 |
+
},
|
| 83 |
+
"source": [
|
| 84 |
+
"## Download videos and preprocessing\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"FineVideo is a quite large dataset, we don't need a ton of examples, so we stream the dataset, check the duration and download the videos shorter than 30 secs."
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": null,
|
| 92 |
+
"metadata": {
|
| 93 |
+
"id": "wBFfYgLxmg7b"
|
| 94 |
+
},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"from datasets import load_dataset\n",
|
| 98 |
+
"import json\n",
|
| 99 |
+
"import os\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"dataset = load_dataset(\"HuggingFaceFV/finevideo\", split=\"train\", streaming=True)\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"os.makedirs(\"videos\", exist_ok=True)\n",
|
| 105 |
+
"os.makedirs(\"metadata\", exist_ok=True)\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"for idx, sample in enumerate(dataset):\n",
|
| 108 |
+
" data = sample[\"json\"]\n",
|
| 109 |
+
" duration = data.get(\"duration_seconds\", 0)\n",
|
| 110 |
+
" if duration < 30:\n",
|
| 111 |
+
" video_filename = f\"videos/sample_{idx}.mp4\"\n",
|
| 112 |
+
" with open(video_filename, 'wb') as video_file:\n",
|
| 113 |
+
" video_file.write(sample['mp4'])\n",
|
| 114 |
+
"\n",
|
| 115 |
+
" json_filename = f\"metadata/sample_{idx}.json\"\n",
|
| 116 |
+
" with open(json_filename, 'w') as json_file:\n",
|
| 117 |
+
" json.dump(sample['json'], json_file)\n"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": 7,
|
| 123 |
+
"metadata": {
|
| 124 |
+
"colab": {
|
| 125 |
+
"base_uri": "https://localhost:8080/"
|
| 126 |
+
},
|
| 127 |
+
"id": "K48dmmZTdZ1l",
|
| 128 |
+
"outputId": "31c7c32b-1c40-4df4-eb51-11857d7b4da9"
|
| 129 |
+
},
|
| 130 |
+
"outputs": [
|
| 131 |
+
{
|
| 132 |
+
"output_type": "stream",
|
| 133 |
+
"name": "stdout",
|
| 134 |
+
"text": [
|
| 135 |
+
"Number of items in content/videos: 871\n"
|
| 136 |
+
]
|
| 137 |
+
}
|
| 138 |
+
],
|
| 139 |
+
"source": [
|
| 140 |
+
" print(f\"Number of items in content/videos: {len(os.listdir('videos'))}\")"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "markdown",
|
| 145 |
+
"source": [
|
| 146 |
+
"In FineVideo some frames are dark so we downsample 6 frames and if we can't get meaningful videos we remove them."
|
| 147 |
+
],
|
| 148 |
+
"metadata": {
|
| 149 |
+
"id": "QbkDI03qHMog"
|
| 150 |
+
}
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": 10,
|
| 155 |
+
"metadata": {
|
| 156 |
+
"id": "0UMZi3tHb-BC"
|
| 157 |
+
},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": [
|
| 160 |
+
"import cv2\n",
|
| 161 |
+
"from PIL import Image\n",
|
| 162 |
+
"import numpy as np\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"def is_dark(frame, threshold=10):\n",
|
| 165 |
+
" return np.max(frame) < threshold # all pixels are very close to 0\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"def downsample_video(video_path):\n",
|
| 168 |
+
" vidcap = cv2.VideoCapture(video_path)\n",
|
| 169 |
+
" total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
|
| 170 |
+
" fps = vidcap.get(cv2.CAP_PROP_FPS)\n",
|
| 171 |
+
"\n",
|
| 172 |
+
" frames = []\n",
|
| 173 |
+
"\n",
|
| 174 |
+
" # Generate 8 evenly spaced indices, skip first and last\n",
|
| 175 |
+
" full_indices = np.linspace(0, total_frames - 1, 8, dtype=int)[1:-1]\n",
|
| 176 |
+
"\n",
|
| 177 |
+
" for i in full_indices:\n",
|
| 178 |
+
" found_valid = False\n",
|
| 179 |
+
" for offset in [0, -1, 1, -2, 2]: # Try nearby frames if original is dark\n",
|
| 180 |
+
" candidate_idx = i + offset\n",
|
| 181 |
+
" if 0 <= candidate_idx < total_frames:\n",
|
| 182 |
+
" vidcap.set(cv2.CAP_PROP_POS_FRAMES, candidate_idx)\n",
|
| 183 |
+
" success, image = vidcap.read()\n",
|
| 184 |
+
" if success:\n",
|
| 185 |
+
" if not is_dark(image):\n",
|
| 186 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
| 187 |
+
" pil_image = Image.fromarray(image)\n",
|
| 188 |
+
" timestamp = round(candidate_idx / fps, 2)\n",
|
| 189 |
+
" frames.append((pil_image, timestamp))\n",
|
| 190 |
+
" found_valid = True\n",
|
| 191 |
+
" break\n",
|
| 192 |
+
" if not found_valid:\n",
|
| 193 |
+
" print(f\"Warning: Could not find non-dark frame near index {i}\")\n",
|
| 194 |
+
"\n",
|
| 195 |
+
" vidcap.release()\n",
|
| 196 |
+
"\n",
|
| 197 |
+
" # If still fewer than 8, try to top off by scanning more frames\n",
|
| 198 |
+
" if len(frames) < 6:\n",
|
| 199 |
+
" print(\"Trying to top off with additional non-dark frames...\")\n",
|
| 200 |
+
" idx = 0\n",
|
| 201 |
+
" while len(frames) < 8 and idx < total_frames:\n",
|
| 202 |
+
" vidcap.set(cv2.CAP_PROP_POS_FRAMES, idx)\n",
|
| 203 |
+
" success, image = vidcap.read()\n",
|
| 204 |
+
" if success and not is_dark(image):\n",
|
| 205 |
+
" image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n",
|
| 206 |
+
" pil_image = Image.fromarray(image)\n",
|
| 207 |
+
" timestamp = round(idx / fps, 2)\n",
|
| 208 |
+
" # Avoid adding duplicate timestamps\n",
|
| 209 |
+
" if not any(ts == timestamp for _, ts in frames):\n",
|
| 210 |
+
" frames.append((pil_image, timestamp))\n",
|
| 211 |
+
" idx += 1\n",
|
| 212 |
+
"\n",
|
| 213 |
+
" return frames[:8] # Ensure exactly 8 frames\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"import os\n",
|
| 216 |
+
"import glob\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"def remove_dark_videos(video_dir, metadata_dir, audio_dir):\n",
|
| 219 |
+
" \"\"\"\n",
|
| 220 |
+
" Remove videos (and their metadata/audio files) if all frames are dark.\n",
|
| 221 |
+
" \"\"\"\n",
|
| 222 |
+
" video_paths = glob.glob(os.path.join(video_dir, \"*.mp4\"))\n",
|
| 223 |
+
"\n",
|
| 224 |
+
" for video_path in video_paths:\n",
|
| 225 |
+
" filename = os.path.basename(video_path)\n",
|
| 226 |
+
" base_name = os.path.splitext(filename)[0]\n",
|
| 227 |
+
"\n",
|
| 228 |
+
" frames = downsample_video(video_path)\n",
|
| 229 |
+
" if len(frames) < 6:\n",
|
| 230 |
+
" try:\n",
|
| 231 |
+
" os.remove(video_path)\n",
|
| 232 |
+
" print(f\"Deleted: {video_path}\")\n",
|
| 233 |
+
" except Exception as e:\n",
|
| 234 |
+
" print(f\"Failed to delete {video_path}: {e}\")\n",
|
| 235 |
+
"\n",
|
| 236 |
+
" metadata_path = os.path.join(metadata_dir, f\"{base_name}.json\")\n",
|
| 237 |
+
" if os.path.exists(metadata_path):\n",
|
| 238 |
+
" os.remove(metadata_path)\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" # Remove audio\n",
|
| 241 |
+
" audio_path = os.path.join(audio_dir, f\"{base_name}.wav\")\n",
|
| 242 |
+
" if os.path.exists(audio_path):\n",
|
| 243 |
+
" os.remove(audio_path)\n",
|
| 244 |
+
"\n"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "code",
|
| 249 |
+
"source": [
|
| 250 |
+
"remove_dark_videos(\n",
|
| 251 |
+
" video_dir=\"videos\",\n",
|
| 252 |
+
" metadata_dir=\"metadata\",\n",
|
| 253 |
+
" audio_dir=\"audios\"\n",
|
| 254 |
+
" )"
|
| 255 |
+
],
|
| 256 |
+
"metadata": {
|
| 257 |
+
"colab": {
|
| 258 |
+
"base_uri": "https://localhost:8080/"
|
| 259 |
+
},
|
| 260 |
+
"id": "pA6iIR38l66-",
|
| 261 |
+
"outputId": "78f81f41-5e70-4900-e33c-cd918aaed67d"
|
| 262 |
+
},
|
| 263 |
+
"execution_count": 12,
|
| 264 |
+
"outputs": [
|
| 265 |
+
{
|
| 266 |
+
"output_type": "stream",
|
| 267 |
+
"name": "stdout",
|
| 268 |
+
"text": [
|
| 269 |
+
"Warning: Could not find non-dark frame near index 208\n",
|
| 270 |
+
"Trying to top off with additional non-dark frames...\n",
|
| 271 |
+
"Deleted: videos/sample_9650.mp4\n",
|
| 272 |
+
"Warning: Could not find non-dark frame near index 432\n",
|
| 273 |
+
"Trying to top off with additional non-dark frames...\n",
|
| 274 |
+
"Deleted: videos/sample_31965.mp4\n"
|
| 275 |
+
]
|
| 276 |
+
}
|
| 277 |
+
]
|
| 278 |
+
},
|
| 279 |
+
{
|
| 280 |
+
"cell_type": "markdown",
|
| 281 |
+
"metadata": {
|
| 282 |
+
"id": "-qa4Tf8PwITC"
|
| 283 |
+
},
|
| 284 |
+
"source": [
|
| 285 |
+
"Gemma-3n accepts video (image frames) and audio separately, so we strip audio from video."
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "code",
|
| 290 |
+
"execution_count": 8,
|
| 291 |
+
"metadata": {
|
| 292 |
+
"id": "OR7bhnCawHrF"
|
| 293 |
+
},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"import os\n",
|
| 297 |
+
"import subprocess\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"video_dir = \"videos\"\n",
|
| 300 |
+
"audio_dir = \"audios\"\n",
|
| 301 |
+
"os.makedirs(audio_dir, exist_ok=True)\n",
|
| 302 |
+
"\n",
|
| 303 |
+
"for filename in os.listdir(video_dir):\n",
|
| 304 |
+
" if not filename.endswith(\".mp4\"):\n",
|
| 305 |
+
" continue\n",
|
| 306 |
+
"\n",
|
| 307 |
+
" idx = filename.split(\"_\")[1].split(\".\")[0]\n",
|
| 308 |
+
" video_path = os.path.join(video_dir, filename)\n",
|
| 309 |
+
" audio_path = os.path.join(audio_dir, f\"sample_{idx}.wav\")\n",
|
| 310 |
+
"\n",
|
| 311 |
+
" subprocess.run([\n",
|
| 312 |
+
" \"ffmpeg\", \"-i\", video_path,\n",
|
| 313 |
+
" \"-q:a\", \"0\", \"-map\", \"a\",\n",
|
| 314 |
+
" audio_path,\n",
|
| 315 |
+
" \"-y\"\n",
|
| 316 |
+
" ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)\n"
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "markdown",
|
| 321 |
+
"metadata": {
|
| 322 |
+
"id": "uIlVtxDcwQcy"
|
| 323 |
+
},
|
| 324 |
+
"source": [
|
| 325 |
+
"Construct a new dataset with audio, video, metadata (video categories). This dataset is very cool, it has some questions and answers, captions and more so get creative if you have the GPU VRAM to do so. Here we solve an easier task for educational purposes."
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"execution_count": 13,
|
| 331 |
+
"metadata": {
|
| 332 |
+
"colab": {
|
| 333 |
+
"base_uri": "https://localhost:8080/",
|
| 334 |
+
"height": 49,
|
| 335 |
+
"referenced_widgets": [
|
| 336 |
+
"4eb3613e8efa4fd9adf2cfe27bfbd699",
|
| 337 |
+
"c15cc5cb9d7947a99a01a30e430d0459",
|
| 338 |
+
"1801493cd54742fd99752b2f605af1cb",
|
| 339 |
+
"e5e518d8cf5f4aa5a0ecad6583f0d317",
|
| 340 |
+
"425f9f26bd0647b1989ecb704414aa9f",
|
| 341 |
+
"5eeff3de00c5488db1817328e83bb992",
|
| 342 |
+
"4846c29045294042b8d916cb0fd8f9d6",
|
| 343 |
+
"20b59cdc19684e1c97517e36f5bf8d6a",
|
| 344 |
+
"143d6079d1744eedb41e2e1182bd0f33",
|
| 345 |
+
"c022d8fabedc43ef9db0c8aca82d215e",
|
| 346 |
+
"464ffcc84f48468b8f5d3f08412c6101"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
"id": "erYr3SdmuS4m",
|
| 350 |
+
"outputId": "0c95ff77-7976-4641-9a51-b7f24f36270d"
|
| 351 |
+
},
|
| 352 |
+
"outputs": [
|
| 353 |
+
{
|
| 354 |
+
"output_type": "display_data",
|
| 355 |
+
"data": {
|
| 356 |
+
"text/plain": [
|
| 357 |
+
"Generating train split: 0 examples [00:00, ? examples/s]"
|
| 358 |
+
],
|
| 359 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 360 |
+
"version_major": 2,
|
| 361 |
+
"version_minor": 0,
|
| 362 |
+
"model_id": "4eb3613e8efa4fd9adf2cfe27bfbd699"
|
| 363 |
+
}
|
| 364 |
+
},
|
| 365 |
+
"metadata": {}
|
| 366 |
+
}
|
| 367 |
+
],
|
| 368 |
+
"source": [
|
| 369 |
+
"from datasets import Dataset\n",
|
| 370 |
+
"import json\n",
|
| 371 |
+
"\n",
|
| 372 |
+
"def gen():\n",
|
| 373 |
+
" meta_dir = \"metadata\"\n",
|
| 374 |
+
" for filename in os.listdir(meta_dir):\n",
|
| 375 |
+
" if not filename.endswith(\".json\"):\n",
|
| 376 |
+
" continue\n",
|
| 377 |
+
"\n",
|
| 378 |
+
" idx = filename.split(\"_\")[1].split(\".\")[0]\n",
|
| 379 |
+
" if os.path.exists(f\"videos/sample_{idx}.mp4\"):\n",
|
| 380 |
+
" video_filename = f\"sample_{idx}.mp4\"\n",
|
| 381 |
+
" audio_filename = f\"sample_{idx}.wav\"\n",
|
| 382 |
+
" json_path = os.path.join(meta_dir, filename)\n",
|
| 383 |
+
"\n",
|
| 384 |
+
" with open(json_path, \"r\") as f:\n",
|
| 385 |
+
" metadata = json.load(f)\n",
|
| 386 |
+
"\n",
|
| 387 |
+
"\n",
|
| 388 |
+
" yield {\n",
|
| 389 |
+
" \"video\": video_filename,\n",
|
| 390 |
+
" \"audio\": audio_filename,\n",
|
| 391 |
+
" \"content_parent_category\": metadata[\"content_parent_category\"],\n",
|
| 392 |
+
" \"sample_index\": int(idx)\n",
|
| 393 |
+
" }\n",
|
| 394 |
+
" else:\n",
|
| 395 |
+
" pass\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"dataset = Dataset.from_generator(gen)\n"
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "markdown",
|
| 402 |
+
"metadata": {
|
| 403 |
+
"id": "CjtgRoSEd9TV"
|
| 404 |
+
},
|
| 405 |
+
"source": [
|
| 406 |
+
"We will speed-up and downsample the audios to save space during training."
|
| 407 |
+
]
|
| 408 |
+
},
|
| 409 |
+
{
|
| 410 |
+
"cell_type": "code",
|
| 411 |
+
"execution_count": 14,
|
| 412 |
+
"metadata": {
|
| 413 |
+
"id": "8DDaQ86MD1Y3"
|
| 414 |
+
},
|
| 415 |
+
"outputs": [],
|
| 416 |
+
"source": [
|
| 417 |
+
"import torchaudio\n",
|
| 418 |
+
"from torchaudio.transforms import Resample\n",
|
| 419 |
+
"import os\n",
|
| 420 |
+
"import torch\n",
|
| 421 |
+
"\n",
|
| 422 |
+
"def preprocess_audio(audio_path, target_sample_rate=16000, max_duration_sec=5, speedup_factor=1.25):\n",
|
| 423 |
+
" waveform, sample_rate = torchaudio.load(audio_path)\n",
|
| 424 |
+
"\n",
|
| 425 |
+
" if waveform.shape[0] > 1:\n",
|
| 426 |
+
" waveform = waveform.mean(dim=0, keepdim=True)\n",
|
| 427 |
+
"\n",
|
| 428 |
+
" if sample_rate != target_sample_rate:\n",
|
| 429 |
+
" resampler = Resample(orig_freq=sample_rate, new_freq=target_sample_rate)\n",
|
| 430 |
+
" waveform = resampler(waveform)\n",
|
| 431 |
+
" sample_rate = target_sample_rate\n",
|
| 432 |
+
"\n",
|
| 433 |
+
" if speedup_factor > 1.0:\n",
|
| 434 |
+
" indices = torch.arange(0, waveform.shape[1], step=speedup_factor).long()\n",
|
| 435 |
+
" if indices[-1] >= waveform.shape[1]:\n",
|
| 436 |
+
" indices = indices[:-1]\n",
|
| 437 |
+
" waveform = waveform[:, indices]\n",
|
| 438 |
+
"\n",
|
| 439 |
+
" max_length = int(target_sample_rate * max_duration_sec)\n",
|
| 440 |
+
" if waveform.shape[1] > max_length:\n",
|
| 441 |
+
" waveform = waveform[:, :max_length]\n",
|
| 442 |
+
"\n",
|
| 443 |
+
" torchaudio.save(audio_path, waveform, sample_rate)\n"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "code",
|
| 448 |
+
"execution_count": 15,
|
| 449 |
+
"metadata": {
|
| 450 |
+
"id": "IQ7L2_0bI1tP"
|
| 451 |
+
},
|
| 452 |
+
"outputs": [],
|
| 453 |
+
"source": [
|
| 454 |
+
"for file_name in os.listdir(\"audios\"):\n",
|
| 455 |
+
" if file_name.lower().endswith(\".wav\"):\n",
|
| 456 |
+
" audio_path = os.path.join(\"audios\", file_name)\n",
|
| 457 |
+
" preprocess_audio(audio_path)"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"cell_type": "code",
|
| 462 |
+
"execution_count": 16,
|
| 463 |
+
"metadata": {
|
| 464 |
+
"id": "pspaO2Lv4SxG"
|
| 465 |
+
},
|
| 466 |
+
"outputs": [],
|
| 467 |
+
"source": [
|
| 468 |
+
"dataset = dataset.train_test_split(test_size=0.10, seed=42)"
|
| 469 |
+
]
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"cell_type": "markdown",
|
| 473 |
+
"source": [
|
| 474 |
+
"### Load the model\n",
|
| 475 |
+
"\n",
|
| 476 |
+
"Make sure you have your Hugging Face token in your Colab secrets."
|
| 477 |
+
],
|
| 478 |
+
"metadata": {
|
| 479 |
+
"id": "hrvYdvQ9Hye4"
|
| 480 |
+
}
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"cell_type": "code",
|
| 484 |
+
"execution_count": 57,
|
| 485 |
+
"metadata": {
|
| 486 |
+
"colab": {
|
| 487 |
+
"base_uri": "https://localhost:8080/",
|
| 488 |
+
"height": 49,
|
| 489 |
+
"referenced_widgets": [
|
| 490 |
+
"a33fedc485b346b1b9d4fb8b18e8ac64",
|
| 491 |
+
"94d5d3b00449488caa6d8badc443a74f",
|
| 492 |
+
"a60a111fc7c24bd7b21fed3f3dd64f29",
|
| 493 |
+
"e830732fc2bc4848847ea85c772d0b98",
|
| 494 |
+
"3e25db05674d4d2f8fd839a0ec63e7d8",
|
| 495 |
+
"3262178b8baf4741b06250d7416df1f3",
|
| 496 |
+
"2e9d5cf7a5c6466a9e1de6d4f403cd95",
|
| 497 |
+
"9d2631150d5c4089bcc95f22a6698287",
|
| 498 |
+
"9c0857a4034f4780ab5e7fdd9aa9d09d",
|
| 499 |
+
"073975370eab45d9abc4f69f2b7b3d48",
|
| 500 |
+
"0d1dfc47d0704506bc6e521c07162b4b"
|
| 501 |
+
]
|
| 502 |
+
},
|
| 503 |
+
"id": "UQaaLBCVzXH-",
|
| 504 |
+
"outputId": "a6244057-777b-4f48-e89e-0d3c945e06e8"
|
| 505 |
+
},
|
| 506 |
+
"outputs": [
|
| 507 |
+
{
|
| 508 |
+
"output_type": "display_data",
|
| 509 |
+
"data": {
|
| 510 |
+
"text/plain": [
|
| 511 |
+
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 512 |
+
],
|
| 513 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 514 |
+
"version_major": 2,
|
| 515 |
+
"version_minor": 0,
|
| 516 |
+
"model_id": "a33fedc485b346b1b9d4fb8b18e8ac64"
|
| 517 |
+
}
|
| 518 |
+
},
|
| 519 |
+
"metadata": {}
|
| 520 |
+
}
|
| 521 |
+
],
|
| 522 |
+
"source": [
|
| 523 |
+
"model = Gemma3nForConditionalGeneration.from_pretrained(\n",
|
| 524 |
+
" \"google/gemma-3n-E2B-it\", torch_dtype=torch.bfloat16,\n",
|
| 525 |
+
")\n",
|
| 526 |
+
"processor = AutoProcessor.from_pretrained(\n",
|
| 527 |
+
" \"google/gemma-3n-E2B-it\",\n",
|
| 528 |
+
")\n",
|
| 529 |
+
"processor.tokenizer.padding_side = \"right\""
|
| 530 |
+
]
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"cell_type": "code",
|
| 534 |
+
"execution_count": null,
|
| 535 |
+
"metadata": {
|
| 536 |
+
"colab": {
|
| 537 |
+
"base_uri": "https://localhost:8080/"
|
| 538 |
+
},
|
| 539 |
+
"id": "epPCxTFi3XQ2",
|
| 540 |
+
"outputId": "f59ad356-5d7c-463e-9c6c-35eb0f0aa586"
|
| 541 |
+
},
|
| 542 |
+
"outputs": [
|
| 543 |
+
{
|
| 544 |
+
"output_type": "execute_result",
|
| 545 |
+
"data": {
|
| 546 |
+
"text/plain": [
|
| 547 |
+
"[2, 1, 3, 0, 262273, 256000, 255999, 262272, 262144, 262145]"
|
| 548 |
+
]
|
| 549 |
+
},
|
| 550 |
+
"metadata": {},
|
| 551 |
+
"execution_count": 24
|
| 552 |
+
}
|
| 553 |
+
],
|
| 554 |
+
"source": [
|
| 555 |
+
"processor.tokenizer.all_special_ids"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
{
|
| 559 |
+
"cell_type": "markdown",
|
| 560 |
+
"metadata": {
|
| 561 |
+
"id": "i-xR4GHUeQ9l"
|
| 562 |
+
},
|
| 563 |
+
"source": [
|
| 564 |
+
"Write our dataset collator. We will train model to predict category of a video (which can be done easily). You can do much better things, for instance FineVideo has QnA section, you can train this model to do open-ended QnA if you have a big VRAM and a lot of patience. Open-ended tasks are harder to work with, and this notebook carries educational purposes on feeding different modalities.\n",
|
| 565 |
+
"\n",
|
| 566 |
+
"In collator we also downsample videos to 6 frames, we have written the helper above. For better results you need more frames."
|
| 567 |
+
]
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"cell_type": "code",
|
| 571 |
+
"execution_count": 36,
|
| 572 |
+
"metadata": {
|
| 573 |
+
"id": "x_e3IjDCzioP"
|
| 574 |
+
},
|
| 575 |
+
"outputs": [],
|
| 576 |
+
"source": [
|
| 577 |
+
"def collate_fn(examples):\n",
|
| 578 |
+
" video_path = examples[0][\"video\"]\n",
|
| 579 |
+
" audio_path = examples[0][\"audio\"]\n",
|
| 580 |
+
" sample_idx = filename.split(\"_\")[1].split(\".\")[0]\n",
|
| 581 |
+
" frames = downsample_video(f\"videos/{video_path}\")\n",
|
| 582 |
+
"\n",
|
| 583 |
+
" text = \"Based on the video, predict the category of it.\"\n",
|
| 584 |
+
" message = [\n",
|
| 585 |
+
" {\n",
|
| 586 |
+
" \"role\": \"user\",\n",
|
| 587 |
+
" \"content\": [\n",
|
| 588 |
+
" {\"type\": \"text\", \"text\": text}\n",
|
| 589 |
+
" ],\n",
|
| 590 |
+
" },\n",
|
| 591 |
+
" ]\n",
|
| 592 |
+
" # this is how video inference should be formatted in Gemma3n\n",
|
| 593 |
+
" for frame in frames:\n",
|
| 594 |
+
" image, timestamp = frame\n",
|
| 595 |
+
" message[0][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame {timestamp}:\"})\n",
|
| 596 |
+
" timestamp = str(timestamp).replace(\".\", \"_\")\n",
|
| 597 |
+
" image.save(f\"image_idx_{sample_idx}_{timestamp}.png\")\n",
|
| 598 |
+
" message[0][\"content\"].append({\"type\": \"image\", \"url\": f\"image_idx_{sample_idx}_{timestamp}.png\"})\n",
|
| 599 |
+
"\n",
|
| 600 |
+
" message[0][\"content\"].append({\"type\": \"audio\", \"audio\": f\"audios/{audio_path}\"})\n",
|
| 601 |
+
" message.append({\"role\": \"assistant\", \"content\": [{\"type\": \"text\", \"text\": examples[0][\"content_parent_category\"]}]})\n",
|
| 602 |
+
" inputs = processor.apply_chat_template(\n",
|
| 603 |
+
" message,\n",
|
| 604 |
+
" add_generation_prompt=False,\n",
|
| 605 |
+
" tokenize=True,\n",
|
| 606 |
+
" return_dict=True,\n",
|
| 607 |
+
" return_tensors=\"pt\",\n",
|
| 608 |
+
" padding=True,\n",
|
| 609 |
+
" ).to(model.device)\n",
|
| 610 |
+
"\n",
|
| 611 |
+
" labels = inputs[\"input_ids\"].clone()\n",
|
| 612 |
+
" special_token_ids = processor.tokenizer.all_special_ids\n",
|
| 613 |
+
"\n",
|
| 614 |
+
" special_token_ids_tensor = torch.tensor(special_token_ids, device=labels.device)\n",
|
| 615 |
+
" mask = torch.isin(labels, special_token_ids_tensor)\n",
|
| 616 |
+
" labels[mask] = -100\n",
|
| 617 |
+
"\n",
|
| 618 |
+
" inputs[\"labels\"] = labels\n",
|
| 619 |
+
" if torch.all(inputs[\"pixel_values\"] == 0):\n",
|
| 620 |
+
" print(\"Frames are dark\")\n",
|
| 621 |
+
"\n",
|
| 622 |
+
" return inputs"
|
| 623 |
+
]
|
| 624 |
+
},
|
| 625 |
+
{
|
| 626 |
+
"cell_type": "markdown",
|
| 627 |
+
"metadata": {
|
| 628 |
+
"id": "wM6OxwNTiyZ1"
|
| 629 |
+
},
|
| 630 |
+
"source": [
|
| 631 |
+
"## Training"
|
| 632 |
+
]
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"cell_type": "markdown",
|
| 636 |
+
"source": [
|
| 637 |
+
"We do LoRA fine-tuning again to save up on space."
|
| 638 |
+
],
|
| 639 |
+
"metadata": {
|
| 640 |
+
"id": "Wj7yYQTQH7wg"
|
| 641 |
+
}
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"cell_type": "code",
|
| 645 |
+
"execution_count": 58,
|
| 646 |
+
"metadata": {
|
| 647 |
+
"id": "uD3W2OO5-1PC"
|
| 648 |
+
},
|
| 649 |
+
"outputs": [],
|
| 650 |
+
"source": [
|
| 651 |
+
"from peft import LoraConfig\n",
|
| 652 |
+
"peft_config = LoraConfig(\n",
|
| 653 |
+
" task_type=\"CAUSAL_LM\",\n",
|
| 654 |
+
" r=16,\n",
|
| 655 |
+
" target_modules=\"all-linear\",\n",
|
| 656 |
+
" lora_alpha=32,\n",
|
| 657 |
+
" lora_dropout=0.05,\n",
|
| 658 |
+
" bias=\"none\",\n",
|
| 659 |
+
" use_rslora=False,\n",
|
| 660 |
+
" use_dora=False,\n",
|
| 661 |
+
" modules_to_save=None\n",
|
| 662 |
+
")"
|
| 663 |
+
]
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"cell_type": "code",
|
| 667 |
+
"execution_count": 59,
|
| 668 |
+
"metadata": {
|
| 669 |
+
"id": "CT7xlPul8RNJ"
|
| 670 |
+
},
|
| 671 |
+
"outputs": [],
|
| 672 |
+
"source": [
|
| 673 |
+
"model.gradient_checkpointing_disable()"
|
| 674 |
+
]
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"cell_type": "code",
|
| 678 |
+
"execution_count": 60,
|
| 679 |
+
"metadata": {
|
| 680 |
+
"id": "3stdS0v15tnY"
|
| 681 |
+
},
|
| 682 |
+
"outputs": [],
|
| 683 |
+
"source": [
|
| 684 |
+
"model.config.use_cache = False"
|
| 685 |
+
]
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"cell_type": "code",
|
| 689 |
+
"execution_count": 61,
|
| 690 |
+
"metadata": {
|
| 691 |
+
"id": "zG53iSes76H-"
|
| 692 |
+
},
|
| 693 |
+
"outputs": [],
|
| 694 |
+
"source": [
|
| 695 |
+
"training_args = SFTConfig(\n",
|
| 696 |
+
" output_dir=\"/content/gemma-3n-finevideo\",\n",
|
| 697 |
+
" eval_strategy='epoch',\n",
|
| 698 |
+
" per_device_train_batch_size=1,\n",
|
| 699 |
+
" per_device_eval_batch_size=1,\n",
|
| 700 |
+
" gradient_accumulation_steps=4,\n",
|
| 701 |
+
" gradient_checkpointing=False,\n",
|
| 702 |
+
" learning_rate=1e-05,\n",
|
| 703 |
+
" num_train_epochs=3.0,\n",
|
| 704 |
+
" logging_steps=10,\n",
|
| 705 |
+
" save_steps=100,\n",
|
| 706 |
+
" bf16=True,\n",
|
| 707 |
+
" report_to=[\"tensorboard\"],\n",
|
| 708 |
+
" dataset_kwargs={'skip_prepare_dataset': True},\n",
|
| 709 |
+
" remove_unused_columns=False,\n",
|
| 710 |
+
" max_seq_length=None,\n",
|
| 711 |
+
" push_to_hub=True,\n",
|
| 712 |
+
" dataloader_pin_memory=False,\n",
|
| 713 |
+
")"
|
| 714 |
+
]
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"cell_type": "code",
|
| 718 |
+
"execution_count": 62,
|
| 719 |
+
"metadata": {
|
| 720 |
+
"colab": {
|
| 721 |
+
"base_uri": "https://localhost:8080/"
|
| 722 |
+
},
|
| 723 |
+
"id": "hPaplK2u70D9",
|
| 724 |
+
"outputId": "4bd2f1cd-e4d2-4e38-e555-ec2e07528e02"
|
| 725 |
+
},
|
| 726 |
+
"outputs": [
|
| 727 |
+
{
|
| 728 |
+
"output_type": "stream",
|
| 729 |
+
"name": "stderr",
|
| 730 |
+
"text": [
|
| 731 |
+
"No label_names provided for model class `PeftModelForCausalLM`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.\n"
|
| 732 |
+
]
|
| 733 |
+
}
|
| 734 |
+
],
|
| 735 |
+
"source": [
|
| 736 |
+
"trainer = SFTTrainer(\n",
|
| 737 |
+
" model=model,\n",
|
| 738 |
+
" args=training_args,\n",
|
| 739 |
+
" data_collator=collate_fn,\n",
|
| 740 |
+
" train_dataset=dataset[\"train\"],\n",
|
| 741 |
+
" eval_dataset=dataset[\"test\"] if training_args.eval_strategy != \"no\" else None,\n",
|
| 742 |
+
" processing_class=processor.tokenizer,\n",
|
| 743 |
+
" peft_config=peft_config,\n",
|
| 744 |
+
")"
|
| 745 |
+
]
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"cell_type": "code",
|
| 749 |
+
"execution_count": 63,
|
| 750 |
+
"metadata": {
|
| 751 |
+
"colab": {
|
| 752 |
+
"base_uri": "https://localhost:8080/",
|
| 753 |
+
"height": 221
|
| 754 |
+
},
|
| 755 |
+
"id": "gsBJcyqe8ET1",
|
| 756 |
+
"outputId": "9aa717c5-e046-42e7-91c7-deae74aa5407"
|
| 757 |
+
},
|
| 758 |
+
"outputs": [
|
| 759 |
+
{
|
| 760 |
+
"output_type": "display_data",
|
| 761 |
+
"data": {
|
| 762 |
+
"text/plain": [
|
| 763 |
+
"<IPython.core.display.HTML object>"
|
| 764 |
+
],
|
| 765 |
+
"text/html": [
|
| 766 |
+
"\n",
|
| 767 |
+
" <div>\n",
|
| 768 |
+
" \n",
|
| 769 |
+
" <progress value='588' max='588' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
| 770 |
+
" [588/588 1:28:09, Epoch 3/3]\n",
|
| 771 |
+
" </div>\n",
|
| 772 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
| 773 |
+
" <thead>\n",
|
| 774 |
+
" <tr style=\"text-align: left;\">\n",
|
| 775 |
+
" <th>Epoch</th>\n",
|
| 776 |
+
" <th>Training Loss</th>\n",
|
| 777 |
+
" <th>Validation Loss</th>\n",
|
| 778 |
+
" </tr>\n",
|
| 779 |
+
" </thead>\n",
|
| 780 |
+
" <tbody>\n",
|
| 781 |
+
" <tr>\n",
|
| 782 |
+
" <td>1</td>\n",
|
| 783 |
+
" <td>1.363500</td>\n",
|
| 784 |
+
" <td>3.557561</td>\n",
|
| 785 |
+
" </tr>\n",
|
| 786 |
+
" <tr>\n",
|
| 787 |
+
" <td>2</td>\n",
|
| 788 |
+
" <td>0.981800</td>\n",
|
| 789 |
+
" <td>3.502365</td>\n",
|
| 790 |
+
" </tr>\n",
|
| 791 |
+
" <tr>\n",
|
| 792 |
+
" <td>3</td>\n",
|
| 793 |
+
" <td>0.844200</td>\n",
|
| 794 |
+
" <td>3.512452</td>\n",
|
| 795 |
+
" </tr>\n",
|
| 796 |
+
" </tbody>\n",
|
| 797 |
+
"</table><p>"
|
| 798 |
+
]
|
| 799 |
+
},
|
| 800 |
+
"metadata": {}
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"output_type": "execute_result",
|
| 804 |
+
"data": {
|
| 805 |
+
"text/plain": [
|
| 806 |
+
"TrainOutput(global_step=588, training_loss=1.369473821451875, metrics={'train_runtime': 5299.3753, 'train_samples_per_second': 0.443, 'train_steps_per_second': 0.111, 'total_flos': 7.490494981503706e+16, 'train_loss': 1.369473821451875})"
|
| 807 |
+
]
|
| 808 |
+
},
|
| 809 |
+
"metadata": {},
|
| 810 |
+
"execution_count": 63
|
| 811 |
+
}
|
| 812 |
+
],
|
| 813 |
+
"source": [
|
| 814 |
+
"trainer.train()"
|
| 815 |
+
]
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"cell_type": "markdown",
|
| 819 |
+
"source": [
|
| 820 |
+
"Test the model with a video of snowboarding."
|
| 821 |
+
],
|
| 822 |
+
"metadata": {
|
| 823 |
+
"id": "qKtWUXVoUyKE"
|
| 824 |
+
}
|
| 825 |
+
},
|
| 826 |
+
{
|
| 827 |
+
"cell_type": "code",
|
| 828 |
+
"execution_count": 67,
|
| 829 |
+
"metadata": {
|
| 830 |
+
"id": "X5fOWf2bRERq",
|
| 831 |
+
"colab": {
|
| 832 |
+
"base_uri": "https://localhost:8080/"
|
| 833 |
+
},
|
| 834 |
+
"outputId": "5daa499e-56c9-4241-eb04-c8c29864ee9e"
|
| 835 |
+
},
|
| 836 |
+
"outputs": [
|
| 837 |
+
{
|
| 838 |
+
"output_type": "stream",
|
| 839 |
+
"name": "stdout",
|
| 840 |
+
"text": [
|
| 841 |
+
"--2025-07-16 13:18:33-- https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4\n",
|
| 842 |
+
"Resolving huggingface.co (huggingface.co)... 18.160.143.99, 18.160.143.32, 18.160.143.75, ...\n",
|
| 843 |
+
"Connecting to huggingface.co (huggingface.co)|18.160.143.99|:443... connected.\n",
|
| 844 |
+
"HTTP request sent, awaiting response... 302 Found\n",
|
| 845 |
+
"Location: https://cdn-lfs-us-1.hf.co/repos/7b/14/7b14679bb56cefbf7829be71f3f444110ccc308f431bd8596f534e743367ea5c/6331cbb913feb48349e3b7015a7969e04ce3cd594b1bda7278e4e33fe4a3f5f3?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27IMG_8137.mp4%3B+filename%3D%22IMG_8137.mp4%22%3B&response-content-type=video%2Fmp4&Expires=1752675513&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY3NTUxM319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzdiLzE0LzdiMTQ2NzliYjU2Y2VmYmY3ODI5YmU3MWYzZjQ0NDExMGNjYzMwOGY0MzFiZDg1OTZmNTM0ZTc0MzM2N2VhNWMvNjMzMWNiYjkxM2ZlYjQ4MzQ5ZTNiNzAxNWE3OTY5ZTA0Y2UzY2Q1OTRiMWJkYTcyNzhlNGUzM2ZlNGEzZjVmMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=dKwm2ee9rdtmzuZ8tVMOOJWndfV85S9dKaTwiZbVQt3N6-1dtWkDKXbIsjuD%7Eyriu1dnXNDSjXSDIn-s7ypd8Ie-U1ABXw5Ou6CZ03Z9U4JIQDWBMwEGGEZ6HFCx0mR3royc3u-AKekcIw7zEOFtfAZ%7Eo0XT7l3BiAAV3IVu94m1ONONU779D1gSgPo1sWfuqWydAefPe2NVmSxY1HvH7DHxVOVRuGTfegXN59hvZKhSfZ0Dk0WqBjhReYVdEVxl5j-5pynjo-G%7EUsvldEcxxQpPdcD1DuOGQvYc0KyWw2Tyv3ibU7vhT%7EwVpvdG6tdIi2QOACJ4rfeaVWn5twIHxw__&Key-Pair-Id=K24J24Z295AEI9 [following]\n",
|
| 846 |
+
"--2025-07-16 13:18:33-- https://cdn-lfs-us-1.hf.co/repos/7b/14/7b14679bb56cefbf7829be71f3f444110ccc308f431bd8596f534e743367ea5c/6331cbb913feb48349e3b7015a7969e04ce3cd594b1bda7278e4e33fe4a3f5f3?response-content-disposition=inline%3B+filename*%3DUTF-8%27%27IMG_8137.mp4%3B+filename%3D%22IMG_8137.mp4%22%3B&response-content-type=video%2Fmp4&Expires=1752675513&Policy=eyJTdGF0ZW1lbnQiOlt7IkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTc1MjY3NTUxM319LCJSZXNvdXJjZSI6Imh0dHBzOi8vY2RuLWxmcy11cy0xLmhmLmNvL3JlcG9zLzdiLzE0LzdiMTQ2NzliYjU2Y2VmYmY3ODI5YmU3MWYzZjQ0NDExMGNjYzMwOGY0MzFiZDg1OTZmNTM0ZTc0MzM2N2VhNWMvNjMzMWNiYjkxM2ZlYjQ4MzQ5ZTNiNzAxNWE3OTY5ZTA0Y2UzY2Q1OTRiMWJkYTcyNzhlNGUzM2ZlNGEzZjVmMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPSoifV19&Signature=dKwm2ee9rdtmzuZ8tVMOOJWndfV85S9dKaTwiZbVQt3N6-1dtWkDKXbIsjuD%7Eyriu1dnXNDSjXSDIn-s7ypd8Ie-U1ABXw5Ou6CZ03Z9U4JIQDWBMwEGGEZ6HFCx0mR3royc3u-AKekcIw7zEOFtfAZ%7Eo0XT7l3BiAAV3IVu94m1ONONU779D1gSgPo1sWfuqWydAefPe2NVmSxY1HvH7DHxVOVRuGTfegXN59hvZKhSfZ0Dk0WqBjhReYVdEVxl5j-5pynjo-G%7EUsvldEcxxQpPdcD1DuOGQvYc0KyWw2Tyv3ibU7vhT%7EwVpvdG6tdIi2QOACJ4rfeaVWn5twIHxw__&Key-Pair-Id=K24J24Z295AEI9\n",
|
| 847 |
+
"Resolving cdn-lfs-us-1.hf.co (cdn-lfs-us-1.hf.co)... 3.169.202.18, 3.169.202.35, 3.169.202.26, ...\n",
|
| 848 |
+
"Connecting to cdn-lfs-us-1.hf.co (cdn-lfs-us-1.hf.co)|3.169.202.18|:443... connected.\n",
|
| 849 |
+
"HTTP request sent, awaiting response... 200 OK\n",
|
| 850 |
+
"Length: 5340706 (5.1M) [video/mp4]\n",
|
| 851 |
+
"Saving to: ‘IMG_8137.mp4’\n",
|
| 852 |
+
"\n",
|
| 853 |
+
"IMG_8137.mp4 100%[===================>] 5.09M --.-KB/s in 0.1s \n",
|
| 854 |
+
"\n",
|
| 855 |
+
"2025-07-16 13:18:33 (38.9 MB/s) - ‘IMG_8137.mp4’ saved [5340706/5340706]\n",
|
| 856 |
+
"\n"
|
| 857 |
+
]
|
| 858 |
+
}
|
| 859 |
+
],
|
| 860 |
+
"source": [
|
| 861 |
+
"!wget https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/IMG_8137.mp4"
|
| 862 |
+
]
|
| 863 |
+
},
|
| 864 |
+
{
|
| 865 |
+
"cell_type": "code",
|
| 866 |
+
"source": [
|
| 867 |
+
"model = trainer.model # trainer has the adapter"
|
| 868 |
+
],
|
| 869 |
+
"metadata": {
|
| 870 |
+
"id": "KBfMiUChc2Ky"
|
| 871 |
+
},
|
| 872 |
+
"execution_count": 89,
|
| 873 |
+
"outputs": []
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"cell_type": "markdown",
|
| 877 |
+
"source": [
|
| 878 |
+
"Strip audio and downsample video."
|
| 879 |
+
],
|
| 880 |
+
"metadata": {
|
| 881 |
+
"id": "R14WzyjbZCwI"
|
| 882 |
+
}
|
| 883 |
+
},
|
| 884 |
+
{
|
| 885 |
+
"cell_type": "code",
|
| 886 |
+
"source": [
|
| 887 |
+
"audio_path = \"/content/test_audio.wav\"\n",
|
| 888 |
+
"subprocess.run([\n",
|
| 889 |
+
" \"ffmpeg\", \"-i\", \"/content/IMG_8137.mp4\",\n",
|
| 890 |
+
" \"-q:a\", \"0\", \"-map\", \"a\",\n",
|
| 891 |
+
" f\"{audio_path}\",\n",
|
| 892 |
+
" \"-y\"\n",
|
| 893 |
+
" ], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)"
|
| 894 |
+
],
|
| 895 |
+
"metadata": {
|
| 896 |
+
"colab": {
|
| 897 |
+
"base_uri": "https://localhost:8080/"
|
| 898 |
+
},
|
| 899 |
+
"id": "RnJZ-QNJaOqp",
|
| 900 |
+
"outputId": "c2f42e28-d427-4da7-cf86-6c3b70e6ee02"
|
| 901 |
+
},
|
| 902 |
+
"execution_count": 97,
|
| 903 |
+
"outputs": [
|
| 904 |
+
{
|
| 905 |
+
"output_type": "execute_result",
|
| 906 |
+
"data": {
|
| 907 |
+
"text/plain": [
|
| 908 |
+
"CompletedProcess(args=['ffmpeg', '-i', '/content/IMG_8137.mp4', '-q:a', '0', '-map', 'a', '/content/test_audio.wav', '-y'], returncode=0)"
|
| 909 |
+
]
|
| 910 |
+
},
|
| 911 |
+
"metadata": {},
|
| 912 |
+
"execution_count": 97
|
| 913 |
+
}
|
| 914 |
+
]
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"cell_type": "code",
|
| 918 |
+
"source": [
|
| 919 |
+
"frames = downsample_video(\"/content/IMG_8137.mp4\")\n",
|
| 920 |
+
"\n",
|
| 921 |
+
"# repeat the chat template\n",
|
| 922 |
+
"text = \"Based on the video, predict the category of it.\"\n",
|
| 923 |
+
"message = [\n",
|
| 924 |
+
" {\n",
|
| 925 |
+
" \"role\": \"user\",\n",
|
| 926 |
+
" \"content\": [\n",
|
| 927 |
+
" {\"type\": \"text\", \"text\": text}\n",
|
| 928 |
+
" ],\n",
|
| 929 |
+
" },\n",
|
| 930 |
+
"]\n",
|
| 931 |
+
"for frame in frames:\n",
|
| 932 |
+
" image, timestamp = frame\n",
|
| 933 |
+
" message[0][\"content\"].append({\"type\": \"text\", \"text\": f\"Frame {timestamp}:\"})\n",
|
| 934 |
+
" timestamp = str(timestamp).replace(\".\", \"_\")\n",
|
| 935 |
+
" image.save(f\"test_frame_{timestamp}.png\")\n",
|
| 936 |
+
" message[0][\"content\"].append({\"type\": \"image\", \"url\": f\"test_frame_{timestamp}.png\"})\n",
|
| 937 |
+
"\n",
|
| 938 |
+
"message[0][\"content\"].append({\"type\": \"audio\", \"audio\": f\"{audio_path}\"})"
|
| 939 |
+
],
|
| 940 |
+
"metadata": {
|
| 941 |
+
"id": "9drrCnfRYi6O"
|
| 942 |
+
},
|
| 943 |
+
"execution_count": 98,
|
| 944 |
+
"outputs": []
|
| 945 |
+
},
|
| 946 |
+
{
|
| 947 |
+
"cell_type": "code",
|
| 948 |
+
"source": [
|
| 949 |
+
"message"
|
| 950 |
+
],
|
| 951 |
+
"metadata": {
|
| 952 |
+
"colab": {
|
| 953 |
+
"base_uri": "https://localhost:8080/"
|
| 954 |
+
},
|
| 955 |
+
"id": "7s1Dhxf_Z3xU",
|
| 956 |
+
"outputId": "1eba1e9e-d859-4aa7-ff4e-992ef272df7c"
|
| 957 |
+
},
|
| 958 |
+
"execution_count": 99,
|
| 959 |
+
"outputs": [
|
| 960 |
+
{
|
| 961 |
+
"output_type": "execute_result",
|
| 962 |
+
"data": {
|
| 963 |
+
"text/plain": [
|
| 964 |
+
"[{'role': 'user',\n",
|
| 965 |
+
" 'content': [{'type': 'text',\n",
|
| 966 |
+
" 'text': 'Based on the video, predict the category of it.'},\n",
|
| 967 |
+
" {'type': 'text', 'text': 'Frame 0.88:'},\n",
|
| 968 |
+
" {'type': 'image', 'url': 'test_frame_0_88.png'},\n",
|
| 969 |
+
" {'type': 'text', 'text': 'Frame 1.79:'},\n",
|
| 970 |
+
" {'type': 'image', 'url': 'test_frame_1_79.png'},\n",
|
| 971 |
+
" {'type': 'text', 'text': 'Frame 2.67:'},\n",
|
| 972 |
+
" {'type': 'image', 'url': 'test_frame_2_67.png'},\n",
|
| 973 |
+
" {'type': 'text', 'text': 'Frame 3.57:'},\n",
|
| 974 |
+
" {'type': 'image', 'url': 'test_frame_3_57.png'},\n",
|
| 975 |
+
" {'type': 'text', 'text': 'Frame 4.45:'},\n",
|
| 976 |
+
" {'type': 'image', 'url': 'test_frame_4_45.png'},\n",
|
| 977 |
+
" {'type': 'text', 'text': 'Frame 5.36:'},\n",
|
| 978 |
+
" {'type': 'image', 'url': 'test_frame_5_36.png'},\n",
|
| 979 |
+
" {'type': 'audio', 'audio': '/content/test_audio.wav'}]}]"
|
| 980 |
+
]
|
| 981 |
+
},
|
| 982 |
+
"metadata": {},
|
| 983 |
+
"execution_count": 99
|
| 984 |
+
}
|
| 985 |
+
]
|
| 986 |
+
},
|
| 987 |
+
{
|
| 988 |
+
"cell_type": "code",
|
| 989 |
+
"source": [
|
| 990 |
+
"inputs = processor.apply_chat_template(\n",
|
| 991 |
+
" message,\n",
|
| 992 |
+
" add_generation_prompt=True,\n",
|
| 993 |
+
" tokenize=True,\n",
|
| 994 |
+
" return_dict=True,\n",
|
| 995 |
+
" return_tensors=\"pt\",\n",
|
| 996 |
+
" padding=True,\n",
|
| 997 |
+
").to(model.device).to(model.dtype)"
|
| 998 |
+
],
|
| 999 |
+
"metadata": {
|
| 1000 |
+
"id": "xNTQRMzsZyQz"
|
| 1001 |
+
},
|
| 1002 |
+
"execution_count": 100,
|
| 1003 |
+
"outputs": []
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"cell_type": "code",
|
| 1007 |
+
"source": [
|
| 1008 |
+
"input_len = inputs[\"input_ids\"].shape[-1]\n",
|
| 1009 |
+
"\n",
|
| 1010 |
+
"with torch.inference_mode():\n",
|
| 1011 |
+
" generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)\n",
|
| 1012 |
+
" generation = generation[0][input_len:]\n",
|
| 1013 |
+
"\n",
|
| 1014 |
+
"decoded = processor.decode(generation, skip_special_tokens=True)\n",
|
| 1015 |
+
"print(decoded)"
|
| 1016 |
+
],
|
| 1017 |
+
"metadata": {
|
| 1018 |
+
"colab": {
|
| 1019 |
+
"base_uri": "https://localhost:8080/"
|
| 1020 |
+
},
|
| 1021 |
+
"id": "WNfnannnZ5-S",
|
| 1022 |
+
"outputId": "0afca313-a4f7-4c02-872e-665a853a19df"
|
| 1023 |
+
},
|
| 1024 |
+
"execution_count": 101,
|
| 1025 |
+
"outputs": [
|
| 1026 |
+
{
|
| 1027 |
+
"output_type": "stream",
|
| 1028 |
+
"name": "stderr",
|
| 1029 |
+
"text": [
|
| 1030 |
+
"The following generation flags are not valid and may be ignored: ['top_p', 'top_k']. Set `TRANSFORMERS_VERBOSITY=info` for more details.\n"
|
| 1031 |
+
]
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"output_type": "stream",
|
| 1035 |
+
"name": "stdout",
|
| 1036 |
+
"text": [
|
| 1037 |
+
"Snowboarding\n"
|
| 1038 |
+
]
|
| 1039 |
+
}
|
| 1040 |
+
]
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"cell_type": "markdown",
|
| 1044 |
+
"source": [
|
| 1045 |
+
"Thanks a lot for reading! Keep training the model further with more data or unfreeze the layers for better performance 💗"
|
| 1046 |
+
],
|
| 1047 |
+
"metadata": {
|
| 1048 |
+
"id": "LOUBj5dgeddG"
|
| 1049 |
+
}
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"cell_type": "code",
|
| 1053 |
+
"source": [],
|
| 1054 |
+
"metadata": {
|
| 1055 |
+
"id": "4KnNR6lneuKm"
|
| 1056 |
+
},
|
| 1057 |
+
"execution_count": null,
|
| 1058 |
+
"outputs": []
|
| 1059 |
+
}
|
| 1060 |
+
],
|
| 1061 |
+
"metadata": {
|
| 1062 |
+
"accelerator": "GPU",
|
| 1063 |
+
"colab": {
|
| 1064 |
+
"gpuType": "A100",
|
| 1065 |
+
"machine_shape": "hm",
|
| 1066 |
+
"provenance": []
|
| 1067 |
+
},
|
| 1068 |
+
"kernelspec": {
|
| 1069 |
+
"display_name": "Python 3",
|
| 1070 |
+
"name": "python3"
|
| 1071 |
+
},
|
| 1072 |
+
"language_info": {
|
| 1073 |
+
"name": "python"
|
| 1074 |
+
},
|
| 1075 |
+
"widgets": {
|
| 1076 |
+
"application/vnd.jupyter.widget-state+json": {
|
| 1077 |
+
"4eb3613e8efa4fd9adf2cfe27bfbd699": {
|
| 1078 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1079 |
+
"model_name": "HBoxModel",
|
| 1080 |
+
"model_module_version": "1.5.0",
|
| 1081 |
+
"state": {
|
| 1082 |
+
"_dom_classes": [],
|
| 1083 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1084 |
+
"_model_module_version": "1.5.0",
|
| 1085 |
+
"_model_name": "HBoxModel",
|
| 1086 |
+
"_view_count": null,
|
| 1087 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1088 |
+
"_view_module_version": "1.5.0",
|
| 1089 |
+
"_view_name": "HBoxView",
|
| 1090 |
+
"box_style": "",
|
| 1091 |
+
"children": [
|
| 1092 |
+
"IPY_MODEL_c15cc5cb9d7947a99a01a30e430d0459",
|
| 1093 |
+
"IPY_MODEL_1801493cd54742fd99752b2f605af1cb",
|
| 1094 |
+
"IPY_MODEL_e5e518d8cf5f4aa5a0ecad6583f0d317"
|
| 1095 |
+
],
|
| 1096 |
+
"layout": "IPY_MODEL_425f9f26bd0647b1989ecb704414aa9f"
|
| 1097 |
+
}
|
| 1098 |
+
},
|
| 1099 |
+
"c15cc5cb9d7947a99a01a30e430d0459": {
|
| 1100 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1101 |
+
"model_name": "HTMLModel",
|
| 1102 |
+
"model_module_version": "1.5.0",
|
| 1103 |
+
"state": {
|
| 1104 |
+
"_dom_classes": [],
|
| 1105 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1106 |
+
"_model_module_version": "1.5.0",
|
| 1107 |
+
"_model_name": "HTMLModel",
|
| 1108 |
+
"_view_count": null,
|
| 1109 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1110 |
+
"_view_module_version": "1.5.0",
|
| 1111 |
+
"_view_name": "HTMLView",
|
| 1112 |
+
"description": "",
|
| 1113 |
+
"description_tooltip": null,
|
| 1114 |
+
"layout": "IPY_MODEL_5eeff3de00c5488db1817328e83bb992",
|
| 1115 |
+
"placeholder": "",
|
| 1116 |
+
"style": "IPY_MODEL_4846c29045294042b8d916cb0fd8f9d6",
|
| 1117 |
+
"value": "Generating train split: "
|
| 1118 |
+
}
|
| 1119 |
+
},
|
| 1120 |
+
"1801493cd54742fd99752b2f605af1cb": {
|
| 1121 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1122 |
+
"model_name": "FloatProgressModel",
|
| 1123 |
+
"model_module_version": "1.5.0",
|
| 1124 |
+
"state": {
|
| 1125 |
+
"_dom_classes": [],
|
| 1126 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1127 |
+
"_model_module_version": "1.5.0",
|
| 1128 |
+
"_model_name": "FloatProgressModel",
|
| 1129 |
+
"_view_count": null,
|
| 1130 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1131 |
+
"_view_module_version": "1.5.0",
|
| 1132 |
+
"_view_name": "ProgressView",
|
| 1133 |
+
"bar_style": "success",
|
| 1134 |
+
"description": "",
|
| 1135 |
+
"description_tooltip": null,
|
| 1136 |
+
"layout": "IPY_MODEL_20b59cdc19684e1c97517e36f5bf8d6a",
|
| 1137 |
+
"max": 1,
|
| 1138 |
+
"min": 0,
|
| 1139 |
+
"orientation": "horizontal",
|
| 1140 |
+
"style": "IPY_MODEL_143d6079d1744eedb41e2e1182bd0f33",
|
| 1141 |
+
"value": 1
|
| 1142 |
+
}
|
| 1143 |
+
},
|
| 1144 |
+
"e5e518d8cf5f4aa5a0ecad6583f0d317": {
|
| 1145 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1146 |
+
"model_name": "HTMLModel",
|
| 1147 |
+
"model_module_version": "1.5.0",
|
| 1148 |
+
"state": {
|
| 1149 |
+
"_dom_classes": [],
|
| 1150 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1151 |
+
"_model_module_version": "1.5.0",
|
| 1152 |
+
"_model_name": "HTMLModel",
|
| 1153 |
+
"_view_count": null,
|
| 1154 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1155 |
+
"_view_module_version": "1.5.0",
|
| 1156 |
+
"_view_name": "HTMLView",
|
| 1157 |
+
"description": "",
|
| 1158 |
+
"description_tooltip": null,
|
| 1159 |
+
"layout": "IPY_MODEL_c022d8fabedc43ef9db0c8aca82d215e",
|
| 1160 |
+
"placeholder": "",
|
| 1161 |
+
"style": "IPY_MODEL_464ffcc84f48468b8f5d3f08412c6101",
|
| 1162 |
+
"value": " 869/0 [00:00<00:00, 8490.20 examples/s]"
|
| 1163 |
+
}
|
| 1164 |
+
},
|
| 1165 |
+
"425f9f26bd0647b1989ecb704414aa9f": {
|
| 1166 |
+
"model_module": "@jupyter-widgets/base",
|
| 1167 |
+
"model_name": "LayoutModel",
|
| 1168 |
+
"model_module_version": "1.2.0",
|
| 1169 |
+
"state": {
|
| 1170 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1171 |
+
"_model_module_version": "1.2.0",
|
| 1172 |
+
"_model_name": "LayoutModel",
|
| 1173 |
+
"_view_count": null,
|
| 1174 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1175 |
+
"_view_module_version": "1.2.0",
|
| 1176 |
+
"_view_name": "LayoutView",
|
| 1177 |
+
"align_content": null,
|
| 1178 |
+
"align_items": null,
|
| 1179 |
+
"align_self": null,
|
| 1180 |
+
"border": null,
|
| 1181 |
+
"bottom": null,
|
| 1182 |
+
"display": null,
|
| 1183 |
+
"flex": null,
|
| 1184 |
+
"flex_flow": null,
|
| 1185 |
+
"grid_area": null,
|
| 1186 |
+
"grid_auto_columns": null,
|
| 1187 |
+
"grid_auto_flow": null,
|
| 1188 |
+
"grid_auto_rows": null,
|
| 1189 |
+
"grid_column": null,
|
| 1190 |
+
"grid_gap": null,
|
| 1191 |
+
"grid_row": null,
|
| 1192 |
+
"grid_template_areas": null,
|
| 1193 |
+
"grid_template_columns": null,
|
| 1194 |
+
"grid_template_rows": null,
|
| 1195 |
+
"height": null,
|
| 1196 |
+
"justify_content": null,
|
| 1197 |
+
"justify_items": null,
|
| 1198 |
+
"left": null,
|
| 1199 |
+
"margin": null,
|
| 1200 |
+
"max_height": null,
|
| 1201 |
+
"max_width": null,
|
| 1202 |
+
"min_height": null,
|
| 1203 |
+
"min_width": null,
|
| 1204 |
+
"object_fit": null,
|
| 1205 |
+
"object_position": null,
|
| 1206 |
+
"order": null,
|
| 1207 |
+
"overflow": null,
|
| 1208 |
+
"overflow_x": null,
|
| 1209 |
+
"overflow_y": null,
|
| 1210 |
+
"padding": null,
|
| 1211 |
+
"right": null,
|
| 1212 |
+
"top": null,
|
| 1213 |
+
"visibility": null,
|
| 1214 |
+
"width": null
|
| 1215 |
+
}
|
| 1216 |
+
},
|
| 1217 |
+
"5eeff3de00c5488db1817328e83bb992": {
|
| 1218 |
+
"model_module": "@jupyter-widgets/base",
|
| 1219 |
+
"model_name": "LayoutModel",
|
| 1220 |
+
"model_module_version": "1.2.0",
|
| 1221 |
+
"state": {
|
| 1222 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1223 |
+
"_model_module_version": "1.2.0",
|
| 1224 |
+
"_model_name": "LayoutModel",
|
| 1225 |
+
"_view_count": null,
|
| 1226 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1227 |
+
"_view_module_version": "1.2.0",
|
| 1228 |
+
"_view_name": "LayoutView",
|
| 1229 |
+
"align_content": null,
|
| 1230 |
+
"align_items": null,
|
| 1231 |
+
"align_self": null,
|
| 1232 |
+
"border": null,
|
| 1233 |
+
"bottom": null,
|
| 1234 |
+
"display": null,
|
| 1235 |
+
"flex": null,
|
| 1236 |
+
"flex_flow": null,
|
| 1237 |
+
"grid_area": null,
|
| 1238 |
+
"grid_auto_columns": null,
|
| 1239 |
+
"grid_auto_flow": null,
|
| 1240 |
+
"grid_auto_rows": null,
|
| 1241 |
+
"grid_column": null,
|
| 1242 |
+
"grid_gap": null,
|
| 1243 |
+
"grid_row": null,
|
| 1244 |
+
"grid_template_areas": null,
|
| 1245 |
+
"grid_template_columns": null,
|
| 1246 |
+
"grid_template_rows": null,
|
| 1247 |
+
"height": null,
|
| 1248 |
+
"justify_content": null,
|
| 1249 |
+
"justify_items": null,
|
| 1250 |
+
"left": null,
|
| 1251 |
+
"margin": null,
|
| 1252 |
+
"max_height": null,
|
| 1253 |
+
"max_width": null,
|
| 1254 |
+
"min_height": null,
|
| 1255 |
+
"min_width": null,
|
| 1256 |
+
"object_fit": null,
|
| 1257 |
+
"object_position": null,
|
| 1258 |
+
"order": null,
|
| 1259 |
+
"overflow": null,
|
| 1260 |
+
"overflow_x": null,
|
| 1261 |
+
"overflow_y": null,
|
| 1262 |
+
"padding": null,
|
| 1263 |
+
"right": null,
|
| 1264 |
+
"top": null,
|
| 1265 |
+
"visibility": null,
|
| 1266 |
+
"width": null
|
| 1267 |
+
}
|
| 1268 |
+
},
|
| 1269 |
+
"4846c29045294042b8d916cb0fd8f9d6": {
|
| 1270 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1271 |
+
"model_name": "DescriptionStyleModel",
|
| 1272 |
+
"model_module_version": "1.5.0",
|
| 1273 |
+
"state": {
|
| 1274 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1275 |
+
"_model_module_version": "1.5.0",
|
| 1276 |
+
"_model_name": "DescriptionStyleModel",
|
| 1277 |
+
"_view_count": null,
|
| 1278 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1279 |
+
"_view_module_version": "1.2.0",
|
| 1280 |
+
"_view_name": "StyleView",
|
| 1281 |
+
"description_width": ""
|
| 1282 |
+
}
|
| 1283 |
+
},
|
| 1284 |
+
"20b59cdc19684e1c97517e36f5bf8d6a": {
|
| 1285 |
+
"model_module": "@jupyter-widgets/base",
|
| 1286 |
+
"model_name": "LayoutModel",
|
| 1287 |
+
"model_module_version": "1.2.0",
|
| 1288 |
+
"state": {
|
| 1289 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1290 |
+
"_model_module_version": "1.2.0",
|
| 1291 |
+
"_model_name": "LayoutModel",
|
| 1292 |
+
"_view_count": null,
|
| 1293 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1294 |
+
"_view_module_version": "1.2.0",
|
| 1295 |
+
"_view_name": "LayoutView",
|
| 1296 |
+
"align_content": null,
|
| 1297 |
+
"align_items": null,
|
| 1298 |
+
"align_self": null,
|
| 1299 |
+
"border": null,
|
| 1300 |
+
"bottom": null,
|
| 1301 |
+
"display": null,
|
| 1302 |
+
"flex": null,
|
| 1303 |
+
"flex_flow": null,
|
| 1304 |
+
"grid_area": null,
|
| 1305 |
+
"grid_auto_columns": null,
|
| 1306 |
+
"grid_auto_flow": null,
|
| 1307 |
+
"grid_auto_rows": null,
|
| 1308 |
+
"grid_column": null,
|
| 1309 |
+
"grid_gap": null,
|
| 1310 |
+
"grid_row": null,
|
| 1311 |
+
"grid_template_areas": null,
|
| 1312 |
+
"grid_template_columns": null,
|
| 1313 |
+
"grid_template_rows": null,
|
| 1314 |
+
"height": null,
|
| 1315 |
+
"justify_content": null,
|
| 1316 |
+
"justify_items": null,
|
| 1317 |
+
"left": null,
|
| 1318 |
+
"margin": null,
|
| 1319 |
+
"max_height": null,
|
| 1320 |
+
"max_width": null,
|
| 1321 |
+
"min_height": null,
|
| 1322 |
+
"min_width": null,
|
| 1323 |
+
"object_fit": null,
|
| 1324 |
+
"object_position": null,
|
| 1325 |
+
"order": null,
|
| 1326 |
+
"overflow": null,
|
| 1327 |
+
"overflow_x": null,
|
| 1328 |
+
"overflow_y": null,
|
| 1329 |
+
"padding": null,
|
| 1330 |
+
"right": null,
|
| 1331 |
+
"top": null,
|
| 1332 |
+
"visibility": null,
|
| 1333 |
+
"width": "20px"
|
| 1334 |
+
}
|
| 1335 |
+
},
|
| 1336 |
+
"143d6079d1744eedb41e2e1182bd0f33": {
|
| 1337 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1338 |
+
"model_name": "ProgressStyleModel",
|
| 1339 |
+
"model_module_version": "1.5.0",
|
| 1340 |
+
"state": {
|
| 1341 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1342 |
+
"_model_module_version": "1.5.0",
|
| 1343 |
+
"_model_name": "ProgressStyleModel",
|
| 1344 |
+
"_view_count": null,
|
| 1345 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1346 |
+
"_view_module_version": "1.2.0",
|
| 1347 |
+
"_view_name": "StyleView",
|
| 1348 |
+
"bar_color": null,
|
| 1349 |
+
"description_width": ""
|
| 1350 |
+
}
|
| 1351 |
+
},
|
| 1352 |
+
"c022d8fabedc43ef9db0c8aca82d215e": {
|
| 1353 |
+
"model_module": "@jupyter-widgets/base",
|
| 1354 |
+
"model_name": "LayoutModel",
|
| 1355 |
+
"model_module_version": "1.2.0",
|
| 1356 |
+
"state": {
|
| 1357 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1358 |
+
"_model_module_version": "1.2.0",
|
| 1359 |
+
"_model_name": "LayoutModel",
|
| 1360 |
+
"_view_count": null,
|
| 1361 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1362 |
+
"_view_module_version": "1.2.0",
|
| 1363 |
+
"_view_name": "LayoutView",
|
| 1364 |
+
"align_content": null,
|
| 1365 |
+
"align_items": null,
|
| 1366 |
+
"align_self": null,
|
| 1367 |
+
"border": null,
|
| 1368 |
+
"bottom": null,
|
| 1369 |
+
"display": null,
|
| 1370 |
+
"flex": null,
|
| 1371 |
+
"flex_flow": null,
|
| 1372 |
+
"grid_area": null,
|
| 1373 |
+
"grid_auto_columns": null,
|
| 1374 |
+
"grid_auto_flow": null,
|
| 1375 |
+
"grid_auto_rows": null,
|
| 1376 |
+
"grid_column": null,
|
| 1377 |
+
"grid_gap": null,
|
| 1378 |
+
"grid_row": null,
|
| 1379 |
+
"grid_template_areas": null,
|
| 1380 |
+
"grid_template_columns": null,
|
| 1381 |
+
"grid_template_rows": null,
|
| 1382 |
+
"height": null,
|
| 1383 |
+
"justify_content": null,
|
| 1384 |
+
"justify_items": null,
|
| 1385 |
+
"left": null,
|
| 1386 |
+
"margin": null,
|
| 1387 |
+
"max_height": null,
|
| 1388 |
+
"max_width": null,
|
| 1389 |
+
"min_height": null,
|
| 1390 |
+
"min_width": null,
|
| 1391 |
+
"object_fit": null,
|
| 1392 |
+
"object_position": null,
|
| 1393 |
+
"order": null,
|
| 1394 |
+
"overflow": null,
|
| 1395 |
+
"overflow_x": null,
|
| 1396 |
+
"overflow_y": null,
|
| 1397 |
+
"padding": null,
|
| 1398 |
+
"right": null,
|
| 1399 |
+
"top": null,
|
| 1400 |
+
"visibility": null,
|
| 1401 |
+
"width": null
|
| 1402 |
+
}
|
| 1403 |
+
},
|
| 1404 |
+
"464ffcc84f48468b8f5d3f08412c6101": {
|
| 1405 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1406 |
+
"model_name": "DescriptionStyleModel",
|
| 1407 |
+
"model_module_version": "1.5.0",
|
| 1408 |
+
"state": {
|
| 1409 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1410 |
+
"_model_module_version": "1.5.0",
|
| 1411 |
+
"_model_name": "DescriptionStyleModel",
|
| 1412 |
+
"_view_count": null,
|
| 1413 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1414 |
+
"_view_module_version": "1.2.0",
|
| 1415 |
+
"_view_name": "StyleView",
|
| 1416 |
+
"description_width": ""
|
| 1417 |
+
}
|
| 1418 |
+
},
|
| 1419 |
+
"a33fedc485b346b1b9d4fb8b18e8ac64": {
|
| 1420 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1421 |
+
"model_name": "HBoxModel",
|
| 1422 |
+
"model_module_version": "1.5.0",
|
| 1423 |
+
"state": {
|
| 1424 |
+
"_dom_classes": [],
|
| 1425 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1426 |
+
"_model_module_version": "1.5.0",
|
| 1427 |
+
"_model_name": "HBoxModel",
|
| 1428 |
+
"_view_count": null,
|
| 1429 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1430 |
+
"_view_module_version": "1.5.0",
|
| 1431 |
+
"_view_name": "HBoxView",
|
| 1432 |
+
"box_style": "",
|
| 1433 |
+
"children": [
|
| 1434 |
+
"IPY_MODEL_94d5d3b00449488caa6d8badc443a74f",
|
| 1435 |
+
"IPY_MODEL_a60a111fc7c24bd7b21fed3f3dd64f29",
|
| 1436 |
+
"IPY_MODEL_e830732fc2bc4848847ea85c772d0b98"
|
| 1437 |
+
],
|
| 1438 |
+
"layout": "IPY_MODEL_3e25db05674d4d2f8fd839a0ec63e7d8"
|
| 1439 |
+
}
|
| 1440 |
+
},
|
| 1441 |
+
"94d5d3b00449488caa6d8badc443a74f": {
|
| 1442 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1443 |
+
"model_name": "HTMLModel",
|
| 1444 |
+
"model_module_version": "1.5.0",
|
| 1445 |
+
"state": {
|
| 1446 |
+
"_dom_classes": [],
|
| 1447 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1448 |
+
"_model_module_version": "1.5.0",
|
| 1449 |
+
"_model_name": "HTMLModel",
|
| 1450 |
+
"_view_count": null,
|
| 1451 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1452 |
+
"_view_module_version": "1.5.0",
|
| 1453 |
+
"_view_name": "HTMLView",
|
| 1454 |
+
"description": "",
|
| 1455 |
+
"description_tooltip": null,
|
| 1456 |
+
"layout": "IPY_MODEL_3262178b8baf4741b06250d7416df1f3",
|
| 1457 |
+
"placeholder": "",
|
| 1458 |
+
"style": "IPY_MODEL_2e9d5cf7a5c6466a9e1de6d4f403cd95",
|
| 1459 |
+
"value": "Loading checkpoint shards: 100%"
|
| 1460 |
+
}
|
| 1461 |
+
},
|
| 1462 |
+
"a60a111fc7c24bd7b21fed3f3dd64f29": {
|
| 1463 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1464 |
+
"model_name": "FloatProgressModel",
|
| 1465 |
+
"model_module_version": "1.5.0",
|
| 1466 |
+
"state": {
|
| 1467 |
+
"_dom_classes": [],
|
| 1468 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1469 |
+
"_model_module_version": "1.5.0",
|
| 1470 |
+
"_model_name": "FloatProgressModel",
|
| 1471 |
+
"_view_count": null,
|
| 1472 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1473 |
+
"_view_module_version": "1.5.0",
|
| 1474 |
+
"_view_name": "ProgressView",
|
| 1475 |
+
"bar_style": "success",
|
| 1476 |
+
"description": "",
|
| 1477 |
+
"description_tooltip": null,
|
| 1478 |
+
"layout": "IPY_MODEL_9d2631150d5c4089bcc95f22a6698287",
|
| 1479 |
+
"max": 3,
|
| 1480 |
+
"min": 0,
|
| 1481 |
+
"orientation": "horizontal",
|
| 1482 |
+
"style": "IPY_MODEL_9c0857a4034f4780ab5e7fdd9aa9d09d",
|
| 1483 |
+
"value": 3
|
| 1484 |
+
}
|
| 1485 |
+
},
|
| 1486 |
+
"e830732fc2bc4848847ea85c772d0b98": {
|
| 1487 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1488 |
+
"model_name": "HTMLModel",
|
| 1489 |
+
"model_module_version": "1.5.0",
|
| 1490 |
+
"state": {
|
| 1491 |
+
"_dom_classes": [],
|
| 1492 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1493 |
+
"_model_module_version": "1.5.0",
|
| 1494 |
+
"_model_name": "HTMLModel",
|
| 1495 |
+
"_view_count": null,
|
| 1496 |
+
"_view_module": "@jupyter-widgets/controls",
|
| 1497 |
+
"_view_module_version": "1.5.0",
|
| 1498 |
+
"_view_name": "HTMLView",
|
| 1499 |
+
"description": "",
|
| 1500 |
+
"description_tooltip": null,
|
| 1501 |
+
"layout": "IPY_MODEL_073975370eab45d9abc4f69f2b7b3d48",
|
| 1502 |
+
"placeholder": "",
|
| 1503 |
+
"style": "IPY_MODEL_0d1dfc47d0704506bc6e521c07162b4b",
|
| 1504 |
+
"value": " 3/3 [00:00<00:00, 3.91it/s]"
|
| 1505 |
+
}
|
| 1506 |
+
},
|
| 1507 |
+
"3e25db05674d4d2f8fd839a0ec63e7d8": {
|
| 1508 |
+
"model_module": "@jupyter-widgets/base",
|
| 1509 |
+
"model_name": "LayoutModel",
|
| 1510 |
+
"model_module_version": "1.2.0",
|
| 1511 |
+
"state": {
|
| 1512 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1513 |
+
"_model_module_version": "1.2.0",
|
| 1514 |
+
"_model_name": "LayoutModel",
|
| 1515 |
+
"_view_count": null,
|
| 1516 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1517 |
+
"_view_module_version": "1.2.0",
|
| 1518 |
+
"_view_name": "LayoutView",
|
| 1519 |
+
"align_content": null,
|
| 1520 |
+
"align_items": null,
|
| 1521 |
+
"align_self": null,
|
| 1522 |
+
"border": null,
|
| 1523 |
+
"bottom": null,
|
| 1524 |
+
"display": null,
|
| 1525 |
+
"flex": null,
|
| 1526 |
+
"flex_flow": null,
|
| 1527 |
+
"grid_area": null,
|
| 1528 |
+
"grid_auto_columns": null,
|
| 1529 |
+
"grid_auto_flow": null,
|
| 1530 |
+
"grid_auto_rows": null,
|
| 1531 |
+
"grid_column": null,
|
| 1532 |
+
"grid_gap": null,
|
| 1533 |
+
"grid_row": null,
|
| 1534 |
+
"grid_template_areas": null,
|
| 1535 |
+
"grid_template_columns": null,
|
| 1536 |
+
"grid_template_rows": null,
|
| 1537 |
+
"height": null,
|
| 1538 |
+
"justify_content": null,
|
| 1539 |
+
"justify_items": null,
|
| 1540 |
+
"left": null,
|
| 1541 |
+
"margin": null,
|
| 1542 |
+
"max_height": null,
|
| 1543 |
+
"max_width": null,
|
| 1544 |
+
"min_height": null,
|
| 1545 |
+
"min_width": null,
|
| 1546 |
+
"object_fit": null,
|
| 1547 |
+
"object_position": null,
|
| 1548 |
+
"order": null,
|
| 1549 |
+
"overflow": null,
|
| 1550 |
+
"overflow_x": null,
|
| 1551 |
+
"overflow_y": null,
|
| 1552 |
+
"padding": null,
|
| 1553 |
+
"right": null,
|
| 1554 |
+
"top": null,
|
| 1555 |
+
"visibility": null,
|
| 1556 |
+
"width": null
|
| 1557 |
+
}
|
| 1558 |
+
},
|
| 1559 |
+
"3262178b8baf4741b06250d7416df1f3": {
|
| 1560 |
+
"model_module": "@jupyter-widgets/base",
|
| 1561 |
+
"model_name": "LayoutModel",
|
| 1562 |
+
"model_module_version": "1.2.0",
|
| 1563 |
+
"state": {
|
| 1564 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1565 |
+
"_model_module_version": "1.2.0",
|
| 1566 |
+
"_model_name": "LayoutModel",
|
| 1567 |
+
"_view_count": null,
|
| 1568 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1569 |
+
"_view_module_version": "1.2.0",
|
| 1570 |
+
"_view_name": "LayoutView",
|
| 1571 |
+
"align_content": null,
|
| 1572 |
+
"align_items": null,
|
| 1573 |
+
"align_self": null,
|
| 1574 |
+
"border": null,
|
| 1575 |
+
"bottom": null,
|
| 1576 |
+
"display": null,
|
| 1577 |
+
"flex": null,
|
| 1578 |
+
"flex_flow": null,
|
| 1579 |
+
"grid_area": null,
|
| 1580 |
+
"grid_auto_columns": null,
|
| 1581 |
+
"grid_auto_flow": null,
|
| 1582 |
+
"grid_auto_rows": null,
|
| 1583 |
+
"grid_column": null,
|
| 1584 |
+
"grid_gap": null,
|
| 1585 |
+
"grid_row": null,
|
| 1586 |
+
"grid_template_areas": null,
|
| 1587 |
+
"grid_template_columns": null,
|
| 1588 |
+
"grid_template_rows": null,
|
| 1589 |
+
"height": null,
|
| 1590 |
+
"justify_content": null,
|
| 1591 |
+
"justify_items": null,
|
| 1592 |
+
"left": null,
|
| 1593 |
+
"margin": null,
|
| 1594 |
+
"max_height": null,
|
| 1595 |
+
"max_width": null,
|
| 1596 |
+
"min_height": null,
|
| 1597 |
+
"min_width": null,
|
| 1598 |
+
"object_fit": null,
|
| 1599 |
+
"object_position": null,
|
| 1600 |
+
"order": null,
|
| 1601 |
+
"overflow": null,
|
| 1602 |
+
"overflow_x": null,
|
| 1603 |
+
"overflow_y": null,
|
| 1604 |
+
"padding": null,
|
| 1605 |
+
"right": null,
|
| 1606 |
+
"top": null,
|
| 1607 |
+
"visibility": null,
|
| 1608 |
+
"width": null
|
| 1609 |
+
}
|
| 1610 |
+
},
|
| 1611 |
+
"2e9d5cf7a5c6466a9e1de6d4f403cd95": {
|
| 1612 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1613 |
+
"model_name": "DescriptionStyleModel",
|
| 1614 |
+
"model_module_version": "1.5.0",
|
| 1615 |
+
"state": {
|
| 1616 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1617 |
+
"_model_module_version": "1.5.0",
|
| 1618 |
+
"_model_name": "DescriptionStyleModel",
|
| 1619 |
+
"_view_count": null,
|
| 1620 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1621 |
+
"_view_module_version": "1.2.0",
|
| 1622 |
+
"_view_name": "StyleView",
|
| 1623 |
+
"description_width": ""
|
| 1624 |
+
}
|
| 1625 |
+
},
|
| 1626 |
+
"9d2631150d5c4089bcc95f22a6698287": {
|
| 1627 |
+
"model_module": "@jupyter-widgets/base",
|
| 1628 |
+
"model_name": "LayoutModel",
|
| 1629 |
+
"model_module_version": "1.2.0",
|
| 1630 |
+
"state": {
|
| 1631 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1632 |
+
"_model_module_version": "1.2.0",
|
| 1633 |
+
"_model_name": "LayoutModel",
|
| 1634 |
+
"_view_count": null,
|
| 1635 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1636 |
+
"_view_module_version": "1.2.0",
|
| 1637 |
+
"_view_name": "LayoutView",
|
| 1638 |
+
"align_content": null,
|
| 1639 |
+
"align_items": null,
|
| 1640 |
+
"align_self": null,
|
| 1641 |
+
"border": null,
|
| 1642 |
+
"bottom": null,
|
| 1643 |
+
"display": null,
|
| 1644 |
+
"flex": null,
|
| 1645 |
+
"flex_flow": null,
|
| 1646 |
+
"grid_area": null,
|
| 1647 |
+
"grid_auto_columns": null,
|
| 1648 |
+
"grid_auto_flow": null,
|
| 1649 |
+
"grid_auto_rows": null,
|
| 1650 |
+
"grid_column": null,
|
| 1651 |
+
"grid_gap": null,
|
| 1652 |
+
"grid_row": null,
|
| 1653 |
+
"grid_template_areas": null,
|
| 1654 |
+
"grid_template_columns": null,
|
| 1655 |
+
"grid_template_rows": null,
|
| 1656 |
+
"height": null,
|
| 1657 |
+
"justify_content": null,
|
| 1658 |
+
"justify_items": null,
|
| 1659 |
+
"left": null,
|
| 1660 |
+
"margin": null,
|
| 1661 |
+
"max_height": null,
|
| 1662 |
+
"max_width": null,
|
| 1663 |
+
"min_height": null,
|
| 1664 |
+
"min_width": null,
|
| 1665 |
+
"object_fit": null,
|
| 1666 |
+
"object_position": null,
|
| 1667 |
+
"order": null,
|
| 1668 |
+
"overflow": null,
|
| 1669 |
+
"overflow_x": null,
|
| 1670 |
+
"overflow_y": null,
|
| 1671 |
+
"padding": null,
|
| 1672 |
+
"right": null,
|
| 1673 |
+
"top": null,
|
| 1674 |
+
"visibility": null,
|
| 1675 |
+
"width": null
|
| 1676 |
+
}
|
| 1677 |
+
},
|
| 1678 |
+
"9c0857a4034f4780ab5e7fdd9aa9d09d": {
|
| 1679 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1680 |
+
"model_name": "ProgressStyleModel",
|
| 1681 |
+
"model_module_version": "1.5.0",
|
| 1682 |
+
"state": {
|
| 1683 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1684 |
+
"_model_module_version": "1.5.0",
|
| 1685 |
+
"_model_name": "ProgressStyleModel",
|
| 1686 |
+
"_view_count": null,
|
| 1687 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1688 |
+
"_view_module_version": "1.2.0",
|
| 1689 |
+
"_view_name": "StyleView",
|
| 1690 |
+
"bar_color": null,
|
| 1691 |
+
"description_width": ""
|
| 1692 |
+
}
|
| 1693 |
+
},
|
| 1694 |
+
"073975370eab45d9abc4f69f2b7b3d48": {
|
| 1695 |
+
"model_module": "@jupyter-widgets/base",
|
| 1696 |
+
"model_name": "LayoutModel",
|
| 1697 |
+
"model_module_version": "1.2.0",
|
| 1698 |
+
"state": {
|
| 1699 |
+
"_model_module": "@jupyter-widgets/base",
|
| 1700 |
+
"_model_module_version": "1.2.0",
|
| 1701 |
+
"_model_name": "LayoutModel",
|
| 1702 |
+
"_view_count": null,
|
| 1703 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1704 |
+
"_view_module_version": "1.2.0",
|
| 1705 |
+
"_view_name": "LayoutView",
|
| 1706 |
+
"align_content": null,
|
| 1707 |
+
"align_items": null,
|
| 1708 |
+
"align_self": null,
|
| 1709 |
+
"border": null,
|
| 1710 |
+
"bottom": null,
|
| 1711 |
+
"display": null,
|
| 1712 |
+
"flex": null,
|
| 1713 |
+
"flex_flow": null,
|
| 1714 |
+
"grid_area": null,
|
| 1715 |
+
"grid_auto_columns": null,
|
| 1716 |
+
"grid_auto_flow": null,
|
| 1717 |
+
"grid_auto_rows": null,
|
| 1718 |
+
"grid_column": null,
|
| 1719 |
+
"grid_gap": null,
|
| 1720 |
+
"grid_row": null,
|
| 1721 |
+
"grid_template_areas": null,
|
| 1722 |
+
"grid_template_columns": null,
|
| 1723 |
+
"grid_template_rows": null,
|
| 1724 |
+
"height": null,
|
| 1725 |
+
"justify_content": null,
|
| 1726 |
+
"justify_items": null,
|
| 1727 |
+
"left": null,
|
| 1728 |
+
"margin": null,
|
| 1729 |
+
"max_height": null,
|
| 1730 |
+
"max_width": null,
|
| 1731 |
+
"min_height": null,
|
| 1732 |
+
"min_width": null,
|
| 1733 |
+
"object_fit": null,
|
| 1734 |
+
"object_position": null,
|
| 1735 |
+
"order": null,
|
| 1736 |
+
"overflow": null,
|
| 1737 |
+
"overflow_x": null,
|
| 1738 |
+
"overflow_y": null,
|
| 1739 |
+
"padding": null,
|
| 1740 |
+
"right": null,
|
| 1741 |
+
"top": null,
|
| 1742 |
+
"visibility": null,
|
| 1743 |
+
"width": null
|
| 1744 |
+
}
|
| 1745 |
+
},
|
| 1746 |
+
"0d1dfc47d0704506bc6e521c07162b4b": {
|
| 1747 |
+
"model_module": "@jupyter-widgets/controls",
|
| 1748 |
+
"model_name": "DescriptionStyleModel",
|
| 1749 |
+
"model_module_version": "1.5.0",
|
| 1750 |
+
"state": {
|
| 1751 |
+
"_model_module": "@jupyter-widgets/controls",
|
| 1752 |
+
"_model_module_version": "1.5.0",
|
| 1753 |
+
"_model_name": "DescriptionStyleModel",
|
| 1754 |
+
"_view_count": null,
|
| 1755 |
+
"_view_module": "@jupyter-widgets/base",
|
| 1756 |
+
"_view_module_version": "1.2.0",
|
| 1757 |
+
"_view_name": "StyleView",
|
| 1758 |
+
"description_width": ""
|
| 1759 |
+
}
|
| 1760 |
+
}
|
| 1761 |
+
}
|
| 1762 |
+
}
|
| 1763 |
+
},
|
| 1764 |
+
"nbformat": 4,
|
| 1765 |
+
"nbformat_minor": 0
|
| 1766 |
+
}
|