Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,111 @@
|
|
| 1 |
---
|
| 2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: llama2
|
| 3 |
+
library_name: peft
|
| 4 |
+
tags:
|
| 5 |
+
- typescript
|
| 6 |
+
- instruction-tuning
|
| 7 |
+
- code-generation
|
| 8 |
+
- lora
|
| 9 |
+
- peft
|
| 10 |
+
base_model: codellama/CodeLlama-13b-hf
|
| 11 |
+
model-index:
|
| 12 |
+
- name: lora-out
|
| 13 |
+
results: []
|
| 14 |
+
datasets:
|
| 15 |
+
- mhhmm/typescript-instruct-20k
|
| 16 |
+
language:
|
| 17 |
+
- en
|
| 18 |
+
metrics:
|
| 19 |
+
- code_eval
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
---
|
| 22 |
+
|
| 23 |
+
## Architecture
|
| 24 |
+
|
| 25 |
+

|
| 26 |
+
|
| 27 |
+
## About
|
| 28 |
+
|
| 29 |
+
This model is a fine-tuned version of [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf).
|
| 30 |
+
It achieves the following results on the evaluation set:
|
| 31 |
+
- Loss: 0.4268
|
| 32 |
+
|
| 33 |
+
### Training hyperparameters
|
| 34 |
+
|
| 35 |
+
The following hyperparameters were used during training:
|
| 36 |
+
- learning_rate: 0.0002
|
| 37 |
+
- train_batch_size: 8
|
| 38 |
+
- eval_batch_size: 8
|
| 39 |
+
- seed: 42
|
| 40 |
+
- distributed_type: multi-GPU
|
| 41 |
+
- num_devices: 2
|
| 42 |
+
- total_train_batch_size: 16
|
| 43 |
+
- total_eval_batch_size: 16
|
| 44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 45 |
+
- lr_scheduler_type: cosine
|
| 46 |
+
- lr_scheduler_warmup_steps: 10
|
| 47 |
+
- num_epochs: 1
|
| 48 |
+
|
| 49 |
+
### Training results
|
| 50 |
+
|
| 51 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 52 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
| 53 |
+
| 0.7555 | 0.01 | 1 | 0.7062 |
|
| 54 |
+
| 0.7036 | 0.05 | 7 | 0.6673 |
|
| 55 |
+
| 0.5422 | 0.1 | 14 | 0.5152 |
|
| 56 |
+
| 0.5351 | 0.15 | 21 | 0.4866 |
|
| 57 |
+
| 0.495 | 0.2 | 28 | 0.4688 |
|
| 58 |
+
| 0.5651 | 0.25 | 35 | 0.4587 |
|
| 59 |
+
| 0.5146 | 0.3 | 42 | 0.4486 |
|
| 60 |
+
| 0.4955 | 0.35 | 49 | 0.4469 |
|
| 61 |
+
| 0.5117 | 0.4 | 56 | 0.4432 |
|
| 62 |
+
| 0.5245 | 0.45 | 63 | 0.4410 |
|
| 63 |
+
| 0.5003 | 0.5 | 70 | 0.4371 |
|
| 64 |
+
| 0.4502 | 0.55 | 77 | 0.4340 |
|
| 65 |
+
| 0.527 | 0.6 | 84 | 0.4315 |
|
| 66 |
+
| 0.48 | 0.65 | 91 | 0.4305 |
|
| 67 |
+
| 0.448 | 0.7 | 98 | 0.4289 |
|
| 68 |
+
| 0.5427 | 0.75 | 105 | 0.4289 |
|
| 69 |
+
| 0.4715 | 0.8 | 112 | 0.4279 |
|
| 70 |
+
| 0.5584 | 0.85 | 119 | 0.4276 |
|
| 71 |
+
| 0.4936 | 0.9 | 126 | 0.4267 |
|
| 72 |
+
| 0.4788 | 0.95 | 133 | 0.4268 |
|
| 73 |
+
| 0.476 | 1.0 | 140 | 0.4268 |
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Framework versions
|
| 77 |
+
|
| 78 |
+
- Transformers 4.36.0.dev0
|
| 79 |
+
- Pytorch 2.0.1+cu118
|
| 80 |
+
- Datasets 2.15.0
|
| 81 |
+
- Tokenizers 0.15.0
|
| 82 |
+
- PEFT 0.6.0
|
| 83 |
+
|
| 84 |
+
### Evaluation
|
| 85 |
+
|
| 86 |
+
I'm using MultiPL-E benchmark, the same as Code Llmama using in their paper
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
| Modal | Pass@k | Estimate | Num problems |
|
| 90 |
+
|-----------------------------------------|--------|----------|---------------|
|
| 91 |
+
| Code LLama - Instruct 13B | 1 | 39.0% | 159 |
|
| 92 |
+
| Our 13B | 1 | 42.4% | 159 |
|
| 93 |
+
|
| 94 |
+
How to reproduce my evaluation? Just run like the offical document of MultiPL-E: https://nuprl.github.io/MultiPL-E/tutorial.html, change the modal name by my model here: `mhhmm/typescript-instruct-20k-v2`
|
| 95 |
+
|
| 96 |
+
This is the code that I ran with Google Colab (using A100 40GB, yes, it requires that much GPU RAM)
|
| 97 |
+
|
| 98 |
+
If you even have a stronger GPU, increase the --batch-size, or --completion-limit
|
| 99 |
+
|
| 100 |
+
```
|
| 101 |
+
!pip install --upgrade pip
|
| 102 |
+
!pip install aiohttp numpy tqdm pytest datasets torch transformers sentencepiece
|
| 103 |
+
!git clone https://github.com/nuprl/MultiPL-E
|
| 104 |
+
%cd MultiPL-E
|
| 105 |
+
!mkdir typescript
|
| 106 |
+
!python3 automodel.py --name mhhmm/typescript-instruct-20k-v2 --root-dataset humaneval --lang ts --temperature 0.2 --batch-size 10 --completion-limit 20 --output-dir-prefix typescript
|
| 107 |
+
%cd evaluation/src
|
| 108 |
+
!python3 main.py --dir ../../typescript --output-dir ../../typescript --recursive
|
| 109 |
+
!python3 pass_k.py ./typescript/*
|
| 110 |
+
```
|
| 111 |
+
|