import gradio as gr import whisper # Load Whisper model model = whisper.load_model("base") # You can change to "small", "medium", or "large" def transcribe_audio(audio): # Transcribe the uploaded audio file result = model.transcribe(audio) text = result['text'] # Simple Tagalog detection (checks for common Tagalog words) tagalog_words = ["ang", "si", "ni", "ay", "sa", "ng"] flagged = any(word in text.split() for word in tagalog_words) # Return transcript and flag return text, "⚠ Tagalog detected!" if flagged else "No Tagalog detected" # Create Gradio interface iface = gr.Interface( fn=transcribe_audio, inputs=gr.Audio(source="upload", type="filepath"), outputs=[gr.Textbox(label="Transcript"), gr.Textbox(label="Flag")], title="ClassWatch Audio Transcriber", description="Upload classroom audio to get a transcript and detect if Tagalog is used." ) iface.launch()