Upload magic-bert-50m-mlm model files
Browse files- README.md +261 -0
- config.json +24 -0
- configuration_magic_bert.py +40 -0
- mime_type_mapping.json +108 -0
- model.safetensors +3 -0
- modeling_magic_bert.py +346 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
README.md
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: transformers
|
| 6 |
+
tags:
|
| 7 |
+
- binary-analysis
|
| 8 |
+
- file-type-detection
|
| 9 |
+
- byte-level
|
| 10 |
+
- fill-mask
|
| 11 |
+
- mlm
|
| 12 |
+
- magic-bytes
|
| 13 |
+
- security
|
| 14 |
+
pipeline_tag: fill-mask
|
| 15 |
+
model-index:
|
| 16 |
+
- name: magic-bert-50m-mlm
|
| 17 |
+
results:
|
| 18 |
+
- task:
|
| 19 |
+
type: fill-mask
|
| 20 |
+
name: Masked Language Modeling
|
| 21 |
+
metrics:
|
| 22 |
+
- name: Perplexity
|
| 23 |
+
type: perplexity
|
| 24 |
+
value: 1.05
|
| 25 |
+
- name: Fill-mask Top-1 Accuracy
|
| 26 |
+
type: accuracy
|
| 27 |
+
value: 58.9
|
| 28 |
+
- name: Fill-mask Top-5 Accuracy
|
| 29 |
+
type: accuracy
|
| 30 |
+
value: 73.5
|
| 31 |
+
- name: Probing Classification Accuracy
|
| 32 |
+
type: accuracy
|
| 33 |
+
value: 87.0
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
# Magic-BERT 50M MLM
|
| 37 |
+
|
| 38 |
+
A BERT-style transformer model trained for binary file understanding using masked language modeling (MLM). This model learns byte-level patterns in binary files, including magic bytes, headers, and structural patterns across 106 file types.
|
| 39 |
+
|
| 40 |
+
## Why Not Just Use libmagic?
|
| 41 |
+
|
| 42 |
+
For intact files starting at byte 0, libmagic works well. But libmagic matches *signatures at fixed offsets*. Magic-BERT learns *structural patterns* throughout the file, enabling use cases where you don't have clean file boundaries:
|
| 43 |
+
|
| 44 |
+
- **Network streams**: Classifying packet payloads mid-connection, before headers arrive
|
| 45 |
+
- **Disk forensics**: Identifying file types during carving, when scanning raw disk images without filesystem metadata
|
| 46 |
+
- **Fragment analysis**: Working with partial files, slack space, or corrupted data
|
| 47 |
+
- **Adversarial contexts**: Detecting file types when magic bytes are stripped, spoofed, or deliberately misleading
|
| 48 |
+
|
| 49 |
+
## Model Description
|
| 50 |
+
|
| 51 |
+
Magic-BERT uses a custom BERT architecture with absolute position embeddings, trained on binary file data using a byte-level BPE tokenizer. The MLM objective teaches the model to predict masked bytes given surrounding context, which implicitly learns file format structure.
|
| 52 |
+
|
| 53 |
+
| Property | Value |
|
| 54 |
+
|----------|-------|
|
| 55 |
+
| Parameters | 59M |
|
| 56 |
+
| Hidden Size | 512 |
|
| 57 |
+
| Layers | 8 |
|
| 58 |
+
| Attention Heads | 8 |
|
| 59 |
+
| Max Sequence Length | 512 tokens |
|
| 60 |
+
| Vocabulary Size | 32,768 (byte-level BPE) |
|
| 61 |
+
| Position Encoding | Absolute (learned embeddings) |
|
| 62 |
+
|
| 63 |
+
### Tokenizer
|
| 64 |
+
|
| 65 |
+
The tokenizer uses the Binary BPE methodology introduced in [Bommarito (2025)](https://arxiv.org/abs/2511.17573). The original Binary BPE tokenizers (available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k)) were trained exclusively on executable binaries (ELF, PE, Mach-O). This tokenizer uses the same BPE training approach but was trained on a diverse corpus spanning 106 file types including documents, images, audio/video, archives, and source code.
|
| 66 |
+
|
| 67 |
+
## Intended Uses
|
| 68 |
+
|
| 69 |
+
**Primary use cases:**
|
| 70 |
+
- Fill-mask: Predicting missing bytes in binary files
|
| 71 |
+
- Magic byte and file signature recognition
|
| 72 |
+
- Feature extraction for downstream classification
|
| 73 |
+
- Research on binary file structure
|
| 74 |
+
|
| 75 |
+
**Example tasks:**
|
| 76 |
+
- Completing partial file headers
|
| 77 |
+
- Identifying file type from structure
|
| 78 |
+
- Anomaly detection in binary data
|
| 79 |
+
|
| 80 |
+
## Detailed Use Cases
|
| 81 |
+
|
| 82 |
+
### Network Traffic Analysis
|
| 83 |
+
When inspecting packet payloads, you often see file data mid-stream—TCP reassembly may give you bytes 1500-3000 of a PDF before you ever see byte 0. Traditional signature matching fails here. Magic-BERT's structural understanding can identify file types from interior content.
|
| 84 |
+
|
| 85 |
+
### Disk Forensics & File Carving
|
| 86 |
+
During disk image analysis, you scan raw bytes looking for file boundaries. Tools like Scalpel rely on header/footer signatures, but many files lack clear footers. Magic-BERT can score byte ranges for file type probability, helping identify carved fragments or validate carving results.
|
| 87 |
+
|
| 88 |
+
### Incident Response
|
| 89 |
+
Malware often strips or modifies magic bytes to evade detection. Polyglot files (valid as multiple types) exploit signature-based tools. Learning structural patterns provides a second opinion that doesn't rely solely on the first few bytes.
|
| 90 |
+
|
| 91 |
+
### Embedded Content Detection
|
| 92 |
+
Files within files (email attachments, archive contents, OLE streams) may appear at arbitrary offsets. Embeddings from Magic-BERT enable similarity search: "find all chunks that look structurally like JPEG data" regardless of where they appear.
|
| 93 |
+
|
| 94 |
+
## Training
|
| 95 |
+
|
| 96 |
+
### Data
|
| 97 |
+
Trained on a diverse corpus of binary files spanning 106 MIME types, including:
|
| 98 |
+
- Documents (PDF, Office formats, OpenDocument)
|
| 99 |
+
- Images (PNG, JPEG, GIF, WebP, TIFF)
|
| 100 |
+
- Audio/Video (MP3, MP4, WebM, FLAC)
|
| 101 |
+
- Archives (ZIP, GZIP, 7z, TAR)
|
| 102 |
+
- Executables (ELF, PE, Mach-O)
|
| 103 |
+
- And 90+ additional formats
|
| 104 |
+
|
| 105 |
+
### Procedure
|
| 106 |
+
|
| 107 |
+
| Phase | Steps | Learning Rate | Batch Size | Objective |
|
| 108 |
+
|-------|-------|---------------|------------|-----------|
|
| 109 |
+
| MLM Pre-training | 100,000 | 1e-4 | 240 | Masked LM (15% masking) |
|
| 110 |
+
|
| 111 |
+
**Data augmentation:** 50% of samples use random byte offset to reduce position bias.
|
| 112 |
+
|
| 113 |
+
## Evaluation Results
|
| 114 |
+
|
| 115 |
+
### Perplexity by Region
|
| 116 |
+
| Region | Perplexity |
|
| 117 |
+
|--------|------------|
|
| 118 |
+
| Magic Bytes (0-9) | 1.07 |
|
| 119 |
+
| Header (10-49) | 1.06 |
|
| 120 |
+
| Body (50+) | 1.05 |
|
| 121 |
+
| **Overall** | **1.05** |
|
| 122 |
+
|
| 123 |
+
### Fill-Mask Accuracy
|
| 124 |
+
| Metric | Value |
|
| 125 |
+
|--------|-------|
|
| 126 |
+
| Top-1 Accuracy | 58.9% |
|
| 127 |
+
| Top-5 Accuracy | 73.5% |
|
| 128 |
+
| Mean Reciprocal Rank | 0.67 |
|
| 129 |
+
|
| 130 |
+
### Representation Quality
|
| 131 |
+
| Metric | Value |
|
| 132 |
+
|--------|-------|
|
| 133 |
+
| Linear Probe Accuracy | 87.0% |
|
| 134 |
+
| Silhouette Score | 0.39 |
|
| 135 |
+
| Separation Ratio | 2.78 |
|
| 136 |
+
|
| 137 |
+
## Architecture: Absolute vs Rotary Position Embeddings
|
| 138 |
+
|
| 139 |
+
This model uses **absolute position embeddings**, where each position (0-511) has a learned embedding vector added to the token embedding. This is the original BERT approach.
|
| 140 |
+
|
| 141 |
+
An alternative is **Rotary Position Embeddings (RoPE)**, used by the RoFormer variant. RoPE encodes relative position through rotation matrices applied to query and key vectors in attention, rather than learning absolute position vectors.
|
| 142 |
+
|
| 143 |
+
**Key finding from our experiments:** Both approaches show similar position bias (~47-48% accuracy drop at offset 1000). Position bias is primarily a data distribution issue (files naturally start at offset 0) rather than an architecture limitation.
|
| 144 |
+
|
| 145 |
+
| Aspect | Magic-BERT (this) | RoFormer |
|
| 146 |
+
|--------|-------------------|----------|
|
| 147 |
+
| Position Encoding | Absolute (learned) | RoPE (rotary) |
|
| 148 |
+
| Parameters | 59M | 42.3M |
|
| 149 |
+
| Perplexity | **1.05** | 1.13 |
|
| 150 |
+
| Fill-mask Top-1 | 58.9% | **61.8%** |
|
| 151 |
+
| Probing Accuracy | **87.0%** | 85.0% |
|
| 152 |
+
|
| 153 |
+
Magic-BERT achieves slightly better perplexity and probing accuracy, while RoFormer achieves better fill-mask accuracy with fewer parameters.
|
| 154 |
+
|
| 155 |
+
## MLM vs Classification: Two-Phase Training
|
| 156 |
+
|
| 157 |
+
This is the **Phase 1 (MLM)** model. The training pipeline has two phases:
|
| 158 |
+
|
| 159 |
+
| Phase | Model | Task | Purpose |
|
| 160 |
+
|-------|-------|------|---------|
|
| 161 |
+
| **Phase 1** | **This model** | Masked Language Modeling | Learn byte-level patterns and file structure |
|
| 162 |
+
| Phase 2 | magic-bert-50m-classification | Contrastive Learning | Optimize embeddings for file type discrimination |
|
| 163 |
+
|
| 164 |
+
**When to use each:**
|
| 165 |
+
- Use **this model (MLM)** for: fill-mask tasks, research, or as a base for custom fine-tuning
|
| 166 |
+
- Use **classification model** for: file type detection, similarity search, production classification
|
| 167 |
+
|
| 168 |
+
## How to Use
|
| 169 |
+
|
| 170 |
+
```python
|
| 171 |
+
from transformers import AutoTokenizer
|
| 172 |
+
from safetensors.torch import load_file
|
| 173 |
+
import torch
|
| 174 |
+
|
| 175 |
+
# Load tokenizer
|
| 176 |
+
tokenizer = AutoTokenizer.from_pretrained("path/to/magic-bert-50m-mlm")
|
| 177 |
+
|
| 178 |
+
# For custom MagicBERT architecture, load directly
|
| 179 |
+
from modeling_magic_bert import MagicBERTForMaskedLM
|
| 180 |
+
from configuration_magic_bert import MagicBERTConfig
|
| 181 |
+
|
| 182 |
+
config = MagicBERTConfig.from_pretrained("path/to/magic-bert-50m-mlm")
|
| 183 |
+
model = MagicBERTForMaskedLM(config)
|
| 184 |
+
state_dict = load_file("path/to/magic-bert-50m-mlm/model.safetensors")
|
| 185 |
+
model.load_state_dict(state_dict)
|
| 186 |
+
|
| 187 |
+
# Fill-mask example
|
| 188 |
+
with open("example.pdf", "rb") as f:
|
| 189 |
+
data = f.read(512)
|
| 190 |
+
|
| 191 |
+
# Decode bytes to string using latin-1 (preserves all byte values 0-255)
|
| 192 |
+
text = data.decode("latin-1")
|
| 193 |
+
|
| 194 |
+
# Tokenize and mask
|
| 195 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
| 196 |
+
mask_pos = 0 # Mask first token
|
| 197 |
+
inputs["input_ids"][0, mask_pos] = tokenizer.mask_token_id
|
| 198 |
+
|
| 199 |
+
# Predict
|
| 200 |
+
with torch.no_grad():
|
| 201 |
+
outputs = model(**inputs)
|
| 202 |
+
predictions = outputs.logits[0, mask_pos].topk(5)
|
| 203 |
+
|
| 204 |
+
print("Top-5 predictions:", tokenizer.convert_ids_to_tokens(predictions.indices))
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
### Getting Embeddings
|
| 208 |
+
|
| 209 |
+
```python
|
| 210 |
+
# Get CLS embeddings for downstream tasks
|
| 211 |
+
with torch.no_grad():
|
| 212 |
+
embeddings = model.get_embeddings(inputs["input_ids"], inputs["attention_mask"])
|
| 213 |
+
# embeddings shape: [batch_size, 512]
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
## Limitations
|
| 217 |
+
|
| 218 |
+
1. **Position bias:** The model performs best when file content starts at position 0. Accuracy drops ~48% when content starts at offset 1000. This reflects training data distribution, not architectural limitations.
|
| 219 |
+
|
| 220 |
+
2. **Sequence length:** Limited to 512 tokens. Longer files require truncation or chunking.
|
| 221 |
+
|
| 222 |
+
3. **Text files:** Lower performance on high-entropy or highly variable content (e.g., encrypted data, random bytes).
|
| 223 |
+
|
| 224 |
+
4. **Domain specificity:** Trained on common file formats; may not generalize to rare or proprietary formats.
|
| 225 |
+
|
| 226 |
+
## Model Selection Guide
|
| 227 |
+
|
| 228 |
+
| Use Case | Recommended Model | Reason |
|
| 229 |
+
|----------|-------------------|--------|
|
| 230 |
+
| Fill-mask / byte prediction | **This model** | Best perplexity (1.05) |
|
| 231 |
+
| Research baseline | **This model** | Established BERT architecture |
|
| 232 |
+
| Classification + fill-mask | magic-bert-50m-classification | Retains 41.8% fill-mask capability |
|
| 233 |
+
| **Production classification** | **magic-bert-50m-roformer-classification** | Highest accuracy (93.7%), efficient (42M params) |
|
| 234 |
+
|
| 235 |
+
## Related Models
|
| 236 |
+
|
| 237 |
+
- **magic-bert-50m-classification**: Same architecture fine-tuned for classification (89.7% accuracy)
|
| 238 |
+
- **magic-bert-50m-roformer-mlm**: RoFormer variant with rotary position embeddings
|
| 239 |
+
- **magic-bert-50m-roformer-classification**: RoFormer variant fine-tuned for classification (93.7% accuracy, recommended for production)
|
| 240 |
+
|
| 241 |
+
## Related Work
|
| 242 |
+
|
| 243 |
+
This model builds on the Binary BPE tokenization approach:
|
| 244 |
+
|
| 245 |
+
- **Binary BPE Paper**: [Bommarito (2025)](https://arxiv.org/abs/2511.17573) introduced byte-level BPE tokenization for binary analysis, demonstrating 2-3x compression over raw bytes for executable content.
|
| 246 |
+
- **Binary BPE Tokenizers**: Pre-trained tokenizers for executables are available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k).
|
| 247 |
+
|
| 248 |
+
**Key difference**: The original Binary BPE work focused on executable binaries (ELF, PE, Mach-O). Magic-BERT extends this to general file type understanding across 106 diverse formats, using a tokenizer trained on the broader dataset.
|
| 249 |
+
|
| 250 |
+
## Citation
|
| 251 |
+
|
| 252 |
+
A paper describing Magic-BERT, the training methodology, and the dataset is forthcoming.
|
| 253 |
+
|
| 254 |
+
```bibtex
|
| 255 |
+
@article{bommarito2025binarybpe,
|
| 256 |
+
title={Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis},
|
| 257 |
+
author={Bommarito, Michael J., II},
|
| 258 |
+
journal={arXiv preprint arXiv:2511.17573},
|
| 259 |
+
year={2025}
|
| 260 |
+
}
|
| 261 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "magic-bert",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MagicBERTForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"vocab_size": 32768,
|
| 7 |
+
"hidden_size": 512,
|
| 8 |
+
"num_hidden_layers": 8,
|
| 9 |
+
"num_attention_heads": 8,
|
| 10 |
+
"intermediate_size": 2048,
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"attention_probs_dropout_prob": 0.1,
|
| 13 |
+
"max_position_embeddings": 512,
|
| 14 |
+
"pad_token_id": 2,
|
| 15 |
+
"hidden_act": "gelu",
|
| 16 |
+
"layer_norm_eps": 1e-12,
|
| 17 |
+
"torch_dtype": "float32",
|
| 18 |
+
"transformers_version": "4.57.0",
|
| 19 |
+
"auto_map": {
|
| 20 |
+
"AutoConfig": "configuration_magic_bert.MagicBERTConfig",
|
| 21 |
+
"AutoModel": "modeling_magic_bert.MagicBERTModel",
|
| 22 |
+
"AutoModelForMaskedLM": "modeling_magic_bert.MagicBERTForMaskedLM"
|
| 23 |
+
}
|
| 24 |
+
}
|
configuration_magic_bert.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MagicBERT configuration for HuggingFace transformers."""
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class MagicBERTConfig(PretrainedConfig):
|
| 7 |
+
"""Configuration class for MagicBERT model.
|
| 8 |
+
|
| 9 |
+
MagicBERT is a BERT-style transformer model designed for binary file
|
| 10 |
+
type classification. It uses a byte-level BPE tokenizer with a 32K vocabulary.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
model_type = "magic-bert"
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
vocab_size: int = 32768,
|
| 18 |
+
hidden_size: int = 512,
|
| 19 |
+
num_hidden_layers: int = 8,
|
| 20 |
+
num_attention_heads: int = 8,
|
| 21 |
+
intermediate_size: int = 2048,
|
| 22 |
+
hidden_dropout_prob: float = 0.1,
|
| 23 |
+
attention_probs_dropout_prob: float = 0.1,
|
| 24 |
+
max_position_embeddings: int = 512,
|
| 25 |
+
pad_token_id: int = 2,
|
| 26 |
+
hidden_act: str = "gelu",
|
| 27 |
+
layer_norm_eps: float = 1e-12,
|
| 28 |
+
**kwargs,
|
| 29 |
+
):
|
| 30 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
| 31 |
+
self.vocab_size = vocab_size
|
| 32 |
+
self.hidden_size = hidden_size
|
| 33 |
+
self.num_hidden_layers = num_hidden_layers
|
| 34 |
+
self.num_attention_heads = num_attention_heads
|
| 35 |
+
self.intermediate_size = intermediate_size
|
| 36 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 37 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 38 |
+
self.max_position_embeddings = max_position_embeddings
|
| 39 |
+
self.hidden_act = hidden_act
|
| 40 |
+
self.layer_norm_eps = layer_norm_eps
|
mime_type_mapping.json
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"0": "application/SIMH-tape-data",
|
| 3 |
+
"1": "application/encrypted",
|
| 4 |
+
"2": "application/gzip",
|
| 5 |
+
"3": "application/javascript",
|
| 6 |
+
"4": "application/json",
|
| 7 |
+
"5": "application/msword",
|
| 8 |
+
"6": "application/mxf",
|
| 9 |
+
"7": "application/octet-stream",
|
| 10 |
+
"8": "application/pdf",
|
| 11 |
+
"9": "application/pgp-keys",
|
| 12 |
+
"10": "application/postscript",
|
| 13 |
+
"11": "application/vnd.microsoft.portable-executable",
|
| 14 |
+
"12": "application/vnd.ms-excel",
|
| 15 |
+
"13": "application/vnd.ms-opentype",
|
| 16 |
+
"14": "application/vnd.ms-powerpoint",
|
| 17 |
+
"15": "application/vnd.oasis.opendocument.spreadsheet",
|
| 18 |
+
"16": "application/vnd.openxmlformats-officedocument.presentationml.presentation",
|
| 19 |
+
"17": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 20 |
+
"18": "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
|
| 21 |
+
"19": "application/vnd.rn-realmedia",
|
| 22 |
+
"20": "application/vnd.wordperfect",
|
| 23 |
+
"21": "application/wasm",
|
| 24 |
+
"22": "application/x-7z-compressed",
|
| 25 |
+
"23": "application/x-archive",
|
| 26 |
+
"24": "application/x-bzip2",
|
| 27 |
+
"25": "application/x-coff",
|
| 28 |
+
"26": "application/x-dbf",
|
| 29 |
+
"27": "application/x-dosexec",
|
| 30 |
+
"28": "application/x-executable",
|
| 31 |
+
"29": "application/x-gettext-translation",
|
| 32 |
+
"30": "application/x-ms-ne-executable",
|
| 33 |
+
"31": "application/x-ndjson",
|
| 34 |
+
"32": "application/x-object",
|
| 35 |
+
"33": "application/x-ole-storage",
|
| 36 |
+
"34": "application/x-sharedlib",
|
| 37 |
+
"35": "application/x-shockwave-flash",
|
| 38 |
+
"36": "application/x-tar",
|
| 39 |
+
"37": "application/x-wine-extension-ini",
|
| 40 |
+
"38": "application/zip",
|
| 41 |
+
"39": "application/zlib",
|
| 42 |
+
"40": "application/zstd",
|
| 43 |
+
"41": "audio/amr",
|
| 44 |
+
"42": "audio/flac",
|
| 45 |
+
"43": "audio/mpeg",
|
| 46 |
+
"44": "audio/ogg",
|
| 47 |
+
"45": "audio/x-ape",
|
| 48 |
+
"46": "audio/x-hx-aac-adts",
|
| 49 |
+
"47": "audio/x-m4a",
|
| 50 |
+
"48": "audio/x-wav",
|
| 51 |
+
"49": "biosig/atf",
|
| 52 |
+
"50": "font/sfnt",
|
| 53 |
+
"51": "font/woff",
|
| 54 |
+
"52": "font/woff2",
|
| 55 |
+
"53": "image/bmp",
|
| 56 |
+
"54": "image/fits",
|
| 57 |
+
"55": "image/gif",
|
| 58 |
+
"56": "image/heif",
|
| 59 |
+
"57": "image/jpeg",
|
| 60 |
+
"58": "image/png",
|
| 61 |
+
"59": "image/svg+xml",
|
| 62 |
+
"60": "image/tiff",
|
| 63 |
+
"61": "image/vnd.adobe.photoshop",
|
| 64 |
+
"62": "image/vnd.microsoft.icon",
|
| 65 |
+
"63": "image/webp",
|
| 66 |
+
"64": "image/x-eps",
|
| 67 |
+
"65": "image/x-exr",
|
| 68 |
+
"66": "image/x-jp2-codestream",
|
| 69 |
+
"67": "image/x-portable-bitmap",
|
| 70 |
+
"68": "image/x-portable-greymap",
|
| 71 |
+
"69": "image/x-tga",
|
| 72 |
+
"70": "image/x-xpixmap",
|
| 73 |
+
"71": "inode/x-empty",
|
| 74 |
+
"72": "message/rfc822",
|
| 75 |
+
"73": "text/csv",
|
| 76 |
+
"74": "text/html",
|
| 77 |
+
"75": "text/plain",
|
| 78 |
+
"76": "text/rtf",
|
| 79 |
+
"77": "text/troff",
|
| 80 |
+
"78": "text/x-Algol68",
|
| 81 |
+
"79": "text/x-asm",
|
| 82 |
+
"80": "text/x-c",
|
| 83 |
+
"81": "text/x-c++",
|
| 84 |
+
"82": "text/x-diff",
|
| 85 |
+
"83": "text/x-file",
|
| 86 |
+
"84": "text/x-fortran",
|
| 87 |
+
"85": "text/x-java",
|
| 88 |
+
"86": "text/x-m4",
|
| 89 |
+
"87": "text/x-makefile",
|
| 90 |
+
"88": "text/x-msdos-batch",
|
| 91 |
+
"89": "text/x-perl",
|
| 92 |
+
"90": "text/x-php",
|
| 93 |
+
"91": "text/x-po",
|
| 94 |
+
"92": "text/x-ruby",
|
| 95 |
+
"93": "text/x-script.python",
|
| 96 |
+
"94": "text/x-shellscript",
|
| 97 |
+
"95": "text/x-tex",
|
| 98 |
+
"96": "text/xml",
|
| 99 |
+
"97": "video/3gpp",
|
| 100 |
+
"98": "video/mp4",
|
| 101 |
+
"99": "video/mpeg",
|
| 102 |
+
"100": "video/quicktime",
|
| 103 |
+
"101": "video/webm",
|
| 104 |
+
"102": "video/x-ivf",
|
| 105 |
+
"103": "video/x-matroska",
|
| 106 |
+
"104": "video/x-ms-asf",
|
| 107 |
+
"105": "video/x-msvideo"
|
| 108 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:494f918a228fcd32d8967cb5decebafdf3b2d0e9a34601e6f9771387e0080d1f
|
| 3 |
+
size 236291992
|
modeling_magic_bert.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MagicBERT model implementation for HuggingFace transformers.
|
| 2 |
+
|
| 3 |
+
This module provides HuggingFace-compatible implementations of MagicBERT,
|
| 4 |
+
a BERT-style model trained for binary file type understanding.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import math
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from typing import Optional, Tuple, Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as F
|
| 14 |
+
from transformers import PreTrainedModel
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
MaskedLMOutput,
|
| 17 |
+
SequenceClassifierOutput,
|
| 18 |
+
BaseModelOutput,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
from .configuration_magic_bert import MagicBERTConfig
|
| 23 |
+
except ImportError:
|
| 24 |
+
from configuration_magic_bert import MagicBERTConfig
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MagicBERTEmbeddings(nn.Module):
|
| 28 |
+
"""MagicBERT embeddings: token + position embeddings."""
|
| 29 |
+
|
| 30 |
+
def __init__(self, config: MagicBERTConfig):
|
| 31 |
+
super().__init__()
|
| 32 |
+
self.token_embeddings = nn.Embedding(
|
| 33 |
+
config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
|
| 34 |
+
)
|
| 35 |
+
self.position_embeddings = nn.Embedding(
|
| 36 |
+
config.max_position_embeddings, config.hidden_size
|
| 37 |
+
)
|
| 38 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 39 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 40 |
+
|
| 41 |
+
self.register_buffer(
|
| 42 |
+
"position_ids",
|
| 43 |
+
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
| 44 |
+
persistent=False,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
|
| 48 |
+
batch_size, seq_length = input_ids.shape
|
| 49 |
+
token_embeds = self.token_embeddings(input_ids)
|
| 50 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 51 |
+
position_embeds = self.position_embeddings(position_ids)
|
| 52 |
+
embeddings = token_embeds + position_embeds
|
| 53 |
+
embeddings = self.layer_norm(embeddings)
|
| 54 |
+
embeddings = self.dropout(embeddings)
|
| 55 |
+
return embeddings
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class MagicBERTAttention(nn.Module):
|
| 59 |
+
"""Multi-head self-attention."""
|
| 60 |
+
|
| 61 |
+
def __init__(self, config: MagicBERTConfig):
|
| 62 |
+
super().__init__()
|
| 63 |
+
self.num_attention_heads = config.num_attention_heads
|
| 64 |
+
self.attention_head_size = config.hidden_size // config.num_attention_heads
|
| 65 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 66 |
+
|
| 67 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
| 68 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
| 69 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
| 70 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 71 |
+
|
| 72 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
| 73 |
+
new_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
| 74 |
+
x = x.view(new_shape)
|
| 75 |
+
return x.permute(0, 2, 1, 3)
|
| 76 |
+
|
| 77 |
+
def forward(
|
| 78 |
+
self,
|
| 79 |
+
hidden_states: torch.Tensor,
|
| 80 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 81 |
+
) -> torch.Tensor:
|
| 82 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
| 83 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
| 84 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
| 85 |
+
|
| 86 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
| 87 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 88 |
+
|
| 89 |
+
if attention_mask is not None:
|
| 90 |
+
attention_mask = attention_mask[:, None, None, :]
|
| 91 |
+
attention_scores = attention_scores + (1.0 - attention_mask) * -10000.0
|
| 92 |
+
|
| 93 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
| 94 |
+
attention_probs = self.dropout(attention_probs)
|
| 95 |
+
context = torch.matmul(attention_probs, value_layer)
|
| 96 |
+
context = context.permute(0, 2, 1, 3).contiguous()
|
| 97 |
+
new_shape = context.size()[:-2] + (self.all_head_size,)
|
| 98 |
+
context = context.view(new_shape)
|
| 99 |
+
return context
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class MagicBERTLayer(nn.Module):
|
| 103 |
+
"""Single transformer layer."""
|
| 104 |
+
|
| 105 |
+
def __init__(self, config: MagicBERTConfig):
|
| 106 |
+
super().__init__()
|
| 107 |
+
self.attention = MagicBERTAttention(config)
|
| 108 |
+
self.attention_output = nn.Linear(config.hidden_size, config.hidden_size)
|
| 109 |
+
self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 110 |
+
self.attention_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 111 |
+
|
| 112 |
+
self.intermediate = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 113 |
+
self.output = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 114 |
+
self.output_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 115 |
+
self.output_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 116 |
+
|
| 117 |
+
def forward(
|
| 118 |
+
self,
|
| 119 |
+
hidden_states: torch.Tensor,
|
| 120 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 121 |
+
) -> torch.Tensor:
|
| 122 |
+
# Self-attention with residual
|
| 123 |
+
attention_output = self.attention(hidden_states, attention_mask)
|
| 124 |
+
attention_output = self.attention_output(attention_output)
|
| 125 |
+
attention_output = self.attention_dropout(attention_output)
|
| 126 |
+
attention_output = self.attention_norm(hidden_states + attention_output)
|
| 127 |
+
|
| 128 |
+
# Feed-forward with residual
|
| 129 |
+
intermediate_output = self.intermediate(attention_output)
|
| 130 |
+
intermediate_output = F.gelu(intermediate_output)
|
| 131 |
+
layer_output = self.output(intermediate_output)
|
| 132 |
+
layer_output = self.output_dropout(layer_output)
|
| 133 |
+
layer_output = self.output_norm(attention_output + layer_output)
|
| 134 |
+
return layer_output
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class MagicBERTEncoder(nn.Module):
|
| 138 |
+
"""Stack of transformer layers."""
|
| 139 |
+
|
| 140 |
+
def __init__(self, config: MagicBERTConfig):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.layers = nn.ModuleList(
|
| 143 |
+
[MagicBERTLayer(config) for _ in range(config.num_hidden_layers)]
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
def forward(
|
| 147 |
+
self,
|
| 148 |
+
hidden_states: torch.Tensor,
|
| 149 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 150 |
+
) -> torch.Tensor:
|
| 151 |
+
for layer in self.layers:
|
| 152 |
+
hidden_states = layer(hidden_states, attention_mask)
|
| 153 |
+
return hidden_states
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class MagicBERTPreTrainedModel(PreTrainedModel):
|
| 157 |
+
"""Base class for MagicBERT models."""
|
| 158 |
+
|
| 159 |
+
config_class = MagicBERTConfig
|
| 160 |
+
base_model_prefix = "magic_bert"
|
| 161 |
+
supports_gradient_checkpointing = False
|
| 162 |
+
|
| 163 |
+
def _init_weights(self, module):
|
| 164 |
+
if isinstance(module, nn.Linear):
|
| 165 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 166 |
+
if module.bias is not None:
|
| 167 |
+
module.bias.data.zero_()
|
| 168 |
+
elif isinstance(module, nn.Embedding):
|
| 169 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 170 |
+
if module.padding_idx is not None:
|
| 171 |
+
module.weight.data[module.padding_idx].zero_()
|
| 172 |
+
elif isinstance(module, nn.LayerNorm):
|
| 173 |
+
module.bias.data.zero_()
|
| 174 |
+
module.weight.data.fill_(1.0)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class MagicBERTModel(MagicBERTPreTrainedModel):
|
| 178 |
+
"""MagicBERT base model outputting raw hidden states."""
|
| 179 |
+
|
| 180 |
+
def __init__(self, config: MagicBERTConfig):
|
| 181 |
+
super().__init__(config)
|
| 182 |
+
self.config = config
|
| 183 |
+
self.embeddings = MagicBERTEmbeddings(config)
|
| 184 |
+
self.encoder = MagicBERTEncoder(config)
|
| 185 |
+
self.post_init()
|
| 186 |
+
|
| 187 |
+
def forward(
|
| 188 |
+
self,
|
| 189 |
+
input_ids: torch.Tensor,
|
| 190 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 191 |
+
token_type_ids: Optional[torch.Tensor] = None, # Ignored, for tokenizer compatibility
|
| 192 |
+
return_dict: Optional[bool] = None,
|
| 193 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], BaseModelOutput]:
|
| 194 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 195 |
+
|
| 196 |
+
hidden_states = self.embeddings(input_ids)
|
| 197 |
+
sequence_output = self.encoder(hidden_states, attention_mask)
|
| 198 |
+
pooled_output = sequence_output[:, 0, :]
|
| 199 |
+
|
| 200 |
+
if not return_dict:
|
| 201 |
+
return (sequence_output, pooled_output)
|
| 202 |
+
|
| 203 |
+
return BaseModelOutput(
|
| 204 |
+
last_hidden_state=sequence_output,
|
| 205 |
+
hidden_states=None,
|
| 206 |
+
attentions=None,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class MagicBERTForMaskedLM(MagicBERTPreTrainedModel):
|
| 211 |
+
"""MagicBERT for masked language modeling (fill-mask task)."""
|
| 212 |
+
|
| 213 |
+
def __init__(self, config: MagicBERTConfig):
|
| 214 |
+
super().__init__(config)
|
| 215 |
+
self.config = config
|
| 216 |
+
self.embeddings = MagicBERTEmbeddings(config)
|
| 217 |
+
self.encoder = MagicBERTEncoder(config)
|
| 218 |
+
self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size)
|
| 219 |
+
self.post_init()
|
| 220 |
+
|
| 221 |
+
def forward(
|
| 222 |
+
self,
|
| 223 |
+
input_ids: torch.Tensor,
|
| 224 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 225 |
+
token_type_ids: Optional[torch.Tensor] = None, # Ignored, for tokenizer compatibility
|
| 226 |
+
labels: Optional[torch.Tensor] = None,
|
| 227 |
+
return_dict: Optional[bool] = None,
|
| 228 |
+
) -> Union[Tuple[torch.Tensor, ...], MaskedLMOutput]:
|
| 229 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 230 |
+
|
| 231 |
+
hidden_states = self.embeddings(input_ids)
|
| 232 |
+
sequence_output = self.encoder(hidden_states, attention_mask)
|
| 233 |
+
logits = self.mlm_head(sequence_output)
|
| 234 |
+
|
| 235 |
+
loss = None
|
| 236 |
+
if labels is not None:
|
| 237 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
| 238 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
| 239 |
+
|
| 240 |
+
if not return_dict:
|
| 241 |
+
output = (logits,)
|
| 242 |
+
return ((loss,) + output) if loss is not None else output
|
| 243 |
+
|
| 244 |
+
return MaskedLMOutput(
|
| 245 |
+
loss=loss,
|
| 246 |
+
logits=logits,
|
| 247 |
+
hidden_states=None,
|
| 248 |
+
attentions=None,
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
def get_embeddings(
|
| 252 |
+
self,
|
| 253 |
+
input_ids: torch.Tensor,
|
| 254 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 255 |
+
pooling: str = "cls",
|
| 256 |
+
) -> torch.Tensor:
|
| 257 |
+
"""Get embeddings for downstream tasks.
|
| 258 |
+
|
| 259 |
+
Args:
|
| 260 |
+
input_ids: Input token IDs
|
| 261 |
+
attention_mask: Attention mask
|
| 262 |
+
pooling: Pooling strategy ("cls" or "mean")
|
| 263 |
+
|
| 264 |
+
Returns:
|
| 265 |
+
Pooled embeddings [batch_size, hidden_size]
|
| 266 |
+
"""
|
| 267 |
+
hidden_states = self.embeddings(input_ids)
|
| 268 |
+
sequence_output = self.encoder(hidden_states, attention_mask)
|
| 269 |
+
|
| 270 |
+
if pooling == "cls":
|
| 271 |
+
return sequence_output[:, 0, :]
|
| 272 |
+
elif pooling == "mean":
|
| 273 |
+
if attention_mask is not None:
|
| 274 |
+
mask = attention_mask.unsqueeze(-1).float()
|
| 275 |
+
return (sequence_output * mask).sum(1) / mask.sum(1).clamp(min=1e-9)
|
| 276 |
+
return sequence_output.mean(dim=1)
|
| 277 |
+
else:
|
| 278 |
+
raise ValueError(f"Unknown pooling: {pooling}")
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
class MagicBERTForSequenceClassification(MagicBERTPreTrainedModel):
|
| 282 |
+
"""MagicBERT for sequence classification (file type classification)."""
|
| 283 |
+
|
| 284 |
+
def __init__(self, config: MagicBERTConfig):
|
| 285 |
+
super().__init__(config)
|
| 286 |
+
self.config = config
|
| 287 |
+
self.num_labels = getattr(config, "num_labels", 106)
|
| 288 |
+
|
| 289 |
+
self.embeddings = MagicBERTEmbeddings(config)
|
| 290 |
+
self.encoder = MagicBERTEncoder(config)
|
| 291 |
+
|
| 292 |
+
# Projection head (for contrastive learning compatibility)
|
| 293 |
+
projection_dim = getattr(config, "contrastive_projection_dim", 256)
|
| 294 |
+
self.projection = nn.Sequential(
|
| 295 |
+
nn.Linear(config.hidden_size, config.hidden_size),
|
| 296 |
+
nn.ReLU(),
|
| 297 |
+
nn.Linear(config.hidden_size, projection_dim),
|
| 298 |
+
)
|
| 299 |
+
self.classifier = nn.Linear(projection_dim, self.num_labels)
|
| 300 |
+
self.post_init()
|
| 301 |
+
|
| 302 |
+
def forward(
|
| 303 |
+
self,
|
| 304 |
+
input_ids: torch.Tensor,
|
| 305 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 306 |
+
token_type_ids: Optional[torch.Tensor] = None, # Ignored, for tokenizer compatibility
|
| 307 |
+
labels: Optional[torch.Tensor] = None,
|
| 308 |
+
return_dict: Optional[bool] = None,
|
| 309 |
+
) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutput]:
|
| 310 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 311 |
+
|
| 312 |
+
hidden_states = self.embeddings(input_ids)
|
| 313 |
+
sequence_output = self.encoder(hidden_states, attention_mask)
|
| 314 |
+
pooled_output = sequence_output[:, 0, :]
|
| 315 |
+
|
| 316 |
+
projections = self.projection(pooled_output)
|
| 317 |
+
projections = F.normalize(projections, p=2, dim=1)
|
| 318 |
+
logits = self.classifier(projections)
|
| 319 |
+
|
| 320 |
+
loss = None
|
| 321 |
+
if labels is not None:
|
| 322 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 323 |
+
loss = loss_fct(logits, labels)
|
| 324 |
+
|
| 325 |
+
if not return_dict:
|
| 326 |
+
output = (logits,)
|
| 327 |
+
return ((loss,) + output) if loss is not None else output
|
| 328 |
+
|
| 329 |
+
return SequenceClassifierOutput(
|
| 330 |
+
loss=loss,
|
| 331 |
+
logits=logits,
|
| 332 |
+
hidden_states=None,
|
| 333 |
+
attentions=None,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
def get_embeddings(
|
| 337 |
+
self,
|
| 338 |
+
input_ids: torch.Tensor,
|
| 339 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 340 |
+
) -> torch.Tensor:
|
| 341 |
+
"""Get normalized projection embeddings for similarity search."""
|
| 342 |
+
hidden_states = self.embeddings(input_ids)
|
| 343 |
+
sequence_output = self.encoder(hidden_states, attention_mask)
|
| 344 |
+
pooled_output = sequence_output[:, 0, :]
|
| 345 |
+
projections = self.projection(pooled_output)
|
| 346 |
+
return F.normalize(projections, p=2, dim=1)
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 3 |
+
"model_max_length": 512,
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"cls_token": "[CLS]",
|
| 7 |
+
"sep_token": "[SEP]",
|
| 8 |
+
"unk_token": "[UNK]"
|
| 9 |
+
}
|