|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | from transformers import CLIPVisionModel, PretrainedConfig | 
					
						
						|  | from transformers import CLIPVisionConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | from datetime import datetime | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig( | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | hidden_act="quick_gelu", | 
					
						
						|  | hidden_size=1024, | 
					
						
						|  | image_size=336, | 
					
						
						|  | initializer_factor=1.0, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | intermediate_size=4096, | 
					
						
						|  | layer_norm_eps=1e-05, | 
					
						
						|  | num_attention_heads=16, | 
					
						
						|  | num_channels=3, | 
					
						
						|  | num_hidden_layers=24, | 
					
						
						|  | patch_size=14, | 
					
						
						|  | projection_dim=768 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Phi3ImageEmbedding(nn.Module): | 
					
						
						|  | """Phi3 Image embedding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | 
					
						
						|  | if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | 
					
						
						|  | embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | 
					
						
						|  | self.drop = nn.Dropout(embd_drop) | 
					
						
						|  | else: | 
					
						
						|  | self.drop = None | 
					
						
						|  |  | 
					
						
						|  | self.wte = wte | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model': | 
					
						
						|  | assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel' | 
					
						
						|  | assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' | 
					
						
						|  | assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel' | 
					
						
						|  | assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336' | 
					
						
						|  | clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG | 
					
						
						|  | self.img_processor = CLIPVisionModel(clip_config) | 
					
						
						|  | image_dim_out = config.img_processor['image_dim_out'] | 
					
						
						|  | self.num_img_tokens = config.img_processor['num_img_tokens'] | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.image_dim_out = image_dim_out | 
					
						
						|  | self.img_sizes = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.use_hd_transform = kwargs.get('use_hd_transform', False) | 
					
						
						|  | self.with_learnable_separator = kwargs.get('with_learnable_separator', False) | 
					
						
						|  | self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') | 
					
						
						|  |  | 
					
						
						|  | assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' | 
					
						
						|  | if self.with_learnable_separator: | 
					
						
						|  | assert self.use_hd_transform, 'learnable separator is only for hd transform' | 
					
						
						|  |  | 
					
						
						|  | self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4])) | 
					
						
						|  | self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4])) | 
					
						
						|  | logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') | 
					
						
						|  |  | 
					
						
						|  | projection_cls = kwargs.get('projection_cls', 'linear') | 
					
						
						|  | if projection_cls == 'linear': | 
					
						
						|  | self.img_projection = nn.Linear(image_dim_out, hidden_size) | 
					
						
						|  | elif projection_cls == 'mlp' and self.use_hd_transform: | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out * 4, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | elif projection_cls == 'mlp': | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.img_features = None | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.img_processor, dict): | 
					
						
						|  | self.layer_idx = config.img_processor.get('layer_idx', -2) | 
					
						
						|  | self.type_feature = config.img_processor.get('type_feature', 'patch') | 
					
						
						|  | else: | 
					
						
						|  | self.layer_idx = -2 | 
					
						
						|  | self.type_feature = 'patch' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_img_features(self, img_features: torch.FloatTensor) -> None: | 
					
						
						|  | self.img_features = img_features | 
					
						
						|  |  | 
					
						
						|  | def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.img_sizes = img_sizes | 
					
						
						|  |  | 
					
						
						|  | def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | LAYER_IDX = self.layer_idx | 
					
						
						|  | TYPE_FEATURE = self.type_feature | 
					
						
						|  |  | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | 
					
						
						|  | img_feature = img_processor_output.hidden_states[LAYER_IDX] | 
					
						
						|  |  | 
					
						
						|  | if TYPE_FEATURE == "patch": | 
					
						
						|  | patch_feature = img_feature[:, 1:] | 
					
						
						|  | return patch_feature | 
					
						
						|  |  | 
					
						
						|  | if TYPE_FEATURE == "cls_patch": | 
					
						
						|  | return img_feature | 
					
						
						|  |  | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor: | 
					
						
						|  |  | 
					
						
						|  | MAX_INPUT_ID = int(1e9) | 
					
						
						|  | img_embeds = pixel_values | 
					
						
						|  | img_sizes = image_sizes | 
					
						
						|  |  | 
					
						
						|  | if self.img_features is not None: | 
					
						
						|  | img_embeds = self.img_features.clone() | 
					
						
						|  | self.img_features = None | 
					
						
						|  |  | 
					
						
						|  | if self.img_sizes is not None: | 
					
						
						|  | img_sizes = self.img_sizes | 
					
						
						|  |  | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=False) | 
					
						
						|  |  | 
					
						
						|  | select = False | 
					
						
						|  |  | 
					
						
						|  | if isinstance(self.img_projection, nn.Sequential): | 
					
						
						|  | target_device = self.img_projection[0].bias.device | 
					
						
						|  | target_dtype = self.img_projection[0].bias.dtype | 
					
						
						|  | else: | 
					
						
						|  | target_device = self.img_projection.bias.device | 
					
						
						|  | target_dtype = self.img_projection.bias.dtype | 
					
						
						|  |  | 
					
						
						|  | if len(positions.tolist()) > 0: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | g_values = abs(input_ids[positions[:, 0], positions[:, 1]]) | 
					
						
						|  |  | 
					
						
						|  | if self.use_hd_transform and img_sizes is not None and len(img_sizes): | 
					
						
						|  | hd_transform = True | 
					
						
						|  | assert img_embeds.ndim == 5, f'img_embeds size: {img_embeds.size()}, expect 5D tensor for hd transform' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  | bs = img_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | img_features = self.get_img_features(img_embeds.flatten(0, 1)) | 
					
						
						|  | base_feat_height = base_feat_width = int(img_features.shape[1] ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | assert base_feat_height == 24 and base_feat_width == 24, f'base_feat_height: {base_feat_height}, base_feat_width: {base_feat_width}, expect 24x24 features for hd transform' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_features = img_features.view(bs, -1, base_feat_height * base_feat_width, self.image_dim_out) | 
					
						
						|  | C = self.image_dim_out | 
					
						
						|  | H = base_feat_height | 
					
						
						|  |  | 
					
						
						|  | output_imgs = [] | 
					
						
						|  | output_len = [] | 
					
						
						|  |  | 
					
						
						|  | if isinstance(img_sizes, torch.Tensor): | 
					
						
						|  | img_sizes = img_sizes.view(-1, 2) | 
					
						
						|  | for _bs in range(bs): | 
					
						
						|  | h, w = img_sizes[_bs] | 
					
						
						|  | h = h // 336 | 
					
						
						|  | w = w // 336 | 
					
						
						|  | B_ = h * w | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | global_img_feature = img_features[_bs, :1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | glb_img = global_img_feature.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous() | 
					
						
						|  | temp_glb_GN = self.sub_GN.repeat(1, H//2, 1, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = img_features[_bs, 1:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = sub_img[:B_] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous() | 
					
						
						|  | sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C) | 
					
						
						|  | temp_sub_GN = self.sub_GN.repeat(1, h*12, 1, 1) | 
					
						
						|  | sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.hd_transform_order == 'glb_sub': | 
					
						
						|  | output_imgs.append(torch.cat([glb_img, self.glb_GN, sub_img], dim=1)) | 
					
						
						|  | elif self.hd_transform_order == 'sub_glb': | 
					
						
						|  | output_imgs.append(torch.cat([sub_img, self.glb_GN, glb_img], dim=1)) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'hd_transform_order = {self.hd_transform_order}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | temp_len = int((h*w+1)*144 + 1 + (h+1)*12) | 
					
						
						|  | assert temp_len == output_imgs[-1].shape[1], f'temp_len: {temp_len}, output_imgs[-1].shape[1]: {output_imgs[-1].shape[1]}' | 
					
						
						|  | output_len.append(temp_len) | 
					
						
						|  |  | 
					
						
						|  | num_img_tokens = output_len | 
					
						
						|  | img_set_tensor = [] | 
					
						
						|  | for _output_img in output_imgs: | 
					
						
						|  | img_feature_proj = self.img_projection(_output_img.to(target_device).to(target_dtype)) | 
					
						
						|  | img_set_tensor.append(img_feature_proj) | 
					
						
						|  | logger.info(f'img_embeds size: {img_embeds.size()}, image sizes: {img_sizes} loading time {datetime.now() - start_time}') | 
					
						
						|  | elif img_embeds.ndim == 4: | 
					
						
						|  | selected_g_values = g_values[::self.num_img_tokens] | 
					
						
						|  | assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}' | 
					
						
						|  | start_time = datetime.now() | 
					
						
						|  | tt = ( | 
					
						
						|  | self.get_img_features(img_embeds) | 
					
						
						|  | .to(target_device) | 
					
						
						|  | .to(target_dtype) | 
					
						
						|  | .reshape(-1, self.image_dim_out) | 
					
						
						|  | ) | 
					
						
						|  | logger.info(f'img_embeds size: {img_embeds.size()}, loading time {datetime.now() - start_time}') | 
					
						
						|  | img_set_tensor = self.img_projection(tt) | 
					
						
						|  | elif img_embeds.ndim == 3: | 
					
						
						|  | selected_g_values = g_values[::self.num_img_tokens] | 
					
						
						|  | assert len(img_embeds) == len(selected_g_values), f'img_embeds size: {img_embeds.size()}, selected_g_values size: {len(selected_g_values)}, selected_g_value {selected_g_values}' | 
					
						
						|  | tt = ( | 
					
						
						|  | img_embeds | 
					
						
						|  | .to(target_device) | 
					
						
						|  | .to(target_dtype) | 
					
						
						|  | .view(-1, self.image_dim_out) | 
					
						
						|  | ) | 
					
						
						|  | img_set_tensor = self.img_projection(tt) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  | select = True | 
					
						
						|  |  | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | input_ids.clamp_min_(0).clamp_max_(self.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if select: | 
					
						
						|  | if hd_transform: | 
					
						
						|  | idx = 0 | 
					
						
						|  | for i, cnt in enumerate(num_img_tokens): | 
					
						
						|  | hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = ( | 
					
						
						|  | img_set_tensor[i] | 
					
						
						|  | .to(hidden_states.dtype) | 
					
						
						|  | .to(hidden_states.device) | 
					
						
						|  | ) | 
					
						
						|  | idx += cnt | 
					
						
						|  | else: | 
					
						
						|  | idx = 0 | 
					
						
						|  | assert len(selected_g_values) * self.num_img_tokens == len(img_set_tensor), f'len(selected_g_values) * self.num_img_tokens = {len(selected_g_values) * self.num_img_tokens}, len(img_set_tensor) = {len(img_set_tensor)}' | 
					
						
						|  | for i, g in enumerate(selected_g_values): | 
					
						
						|  | cnt = self.num_img_tokens | 
					
						
						|  | hidden_states[positions[idx, 0], positions[idx, 1] : positions[idx, 1] + cnt] = ( | 
					
						
						|  | img_set_tensor[i * cnt : (i + 1) * cnt] | 
					
						
						|  | .to(hidden_states.dtype) | 
					
						
						|  | .to(hidden_states.device) | 
					
						
						|  | ) | 
					
						
						|  | idx += cnt | 
					
						
						|  |  | 
					
						
						|  | if self.drop is not None: | 
					
						
						|  | hidden_states = self.drop(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  |