|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Processor class for Phi3-V. | 
					
						
						|  | """ | 
					
						
						|  | import re | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers.feature_extraction_utils import BatchFeature | 
					
						
						|  | from transformers.image_utils import ImageInput | 
					
						
						|  | from transformers.processing_utils import ProcessorMixin | 
					
						
						|  | from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy | 
					
						
						|  | from transformers.utils import TensorType | 
					
						
						|  | from .image_processing_phi3_v import Phi3VImageProcessor | 
					
						
						|  | transformers.Phi3VImageProcessor = Phi3VImageProcessor | 
					
						
						|  |  | 
					
						
						|  | class Phi3VProcessor(ProcessorMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor. | 
					
						
						|  |  | 
					
						
						|  | [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the | 
					
						
						|  | [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image_processor ([`Phi3VImageProcessor`], *optional*): | 
					
						
						|  | The image processor is a required input. | 
					
						
						|  | tokenizer ([`LlamaTokenizerFast`], *optional*): | 
					
						
						|  | The tokenizer is a required input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | attributes = ["image_processor", "tokenizer"] | 
					
						
						|  | image_processor_class = "Phi3VImageProcessor" | 
					
						
						|  | tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | 
					
						
						|  | special_image_token = "<|image|>" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, image_processor, tokenizer): | 
					
						
						|  | self.image_processor = image_processor | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  | self.num_img_tokens = image_processor.num_img_tokens | 
					
						
						|  | self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)] | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | text: Union[TextInput, List[TextInput]], | 
					
						
						|  | images: ImageInput = None, | 
					
						
						|  | padding: Union[bool, str, PaddingStrategy] = False, | 
					
						
						|  | truncation: Union[bool, str, TruncationStrategy] = None, | 
					
						
						|  | max_length=None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | 
					
						
						|  | ) -> BatchFeature: | 
					
						
						|  | """ | 
					
						
						|  | Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | 
					
						
						|  | and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | 
					
						
						|  | the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | 
					
						
						|  | Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | 
					
						
						|  | of the above two methods for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text (`str`, `List[str]`, `List[List[str]]`): | 
					
						
						|  | The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | 
					
						
						|  | (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | 
					
						
						|  | `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | 
					
						
						|  | images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
						
						|  | The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | 
					
						
						|  | tensor. Both channels-first and channels-last formats are supported. | 
					
						
						|  | padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | 
					
						
						|  | Select a strategy to pad the returned sequences (according to the model's padding side and padding | 
					
						
						|  | index) among: | 
					
						
						|  | - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | 
					
						
						|  | acceptable input length for the model if that argument is not provided. | 
					
						
						|  | - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | 
					
						
						|  | lengths). | 
					
						
						|  | max_length (`int`, *optional*): | 
					
						
						|  | Maximum length of the returned list and optionally padding length (see above). | 
					
						
						|  | truncation (`bool`, *optional*): | 
					
						
						|  | Activates truncation to cut input sequences longer than `max_length` to `max_length`. | 
					
						
						|  | return_tensors (`str` or [`~utils.TensorType`], *optional*): | 
					
						
						|  | If set, will return tensors of a particular framework. Acceptable values are: | 
					
						
						|  |  | 
					
						
						|  | - `'tf'`: Return TensorFlow `tf.constant` objects. | 
					
						
						|  | - `'pt'`: Return PyTorch `torch.Tensor` objects. | 
					
						
						|  | - `'np'`: Return NumPy `np.ndarray` objects. | 
					
						
						|  | - `'jax'`: Return JAX `jnp.ndarray` objects. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`BatchFeature`]: A [`BatchFeature`] with the following fields: | 
					
						
						|  |  | 
					
						
						|  | - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | 
					
						
						|  | - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | 
					
						
						|  | `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | 
					
						
						|  | `None`). | 
					
						
						|  | - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | 
					
						
						|  | """ | 
					
						
						|  | if images is not None: | 
					
						
						|  | image_inputs = self.image_processor(images, return_tensors=return_tensors) | 
					
						
						|  | else: | 
					
						
						|  | image_inputs = {} | 
					
						
						|  | inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors) | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens(self, images: ImageInput): | 
					
						
						|  | """ Calculate the number of image tokens for each image. | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | """ | 
					
						
						|  | return self.image_processor.calc_num_image_tokens(images) | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens_from_image_size(self, width, height): | 
					
						
						|  | """ Calculate the number of image token for an image with given width and height. | 
					
						
						|  | Args: | 
					
						
						|  | width (`int`): | 
					
						
						|  | Width of the image. | 
					
						
						|  | height (`int`): | 
					
						
						|  | Height of the image. | 
					
						
						|  | """ | 
					
						
						|  | return self.image_processor.calc_num_image_tokens_from_image_size(width, height) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | def get_special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None): | 
					
						
						|  |  | 
					
						
						|  | if not len(images): | 
					
						
						|  | model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length) | 
					
						
						|  | return BatchFeature(data={**model_inputs}) | 
					
						
						|  |  | 
					
						
						|  | pattern = r"<\|image_\d+\|>" | 
					
						
						|  | prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] | 
					
						
						|  |  | 
					
						
						|  | if 'num_img_tokens' in images: | 
					
						
						|  | num_img_tokens = images['num_img_tokens'] | 
					
						
						|  | else: | 
					
						
						|  | assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided' | 
					
						
						|  | num_crops = images['num_crops'] | 
					
						
						|  | num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] | 
					
						
						|  |  | 
					
						
						|  | images, image_sizes = images['pixel_values'], images['image_sizes'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_tags = re.findall(pattern, texts) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] | 
					
						
						|  | unique_image_ids = sorted(list(set(image_ids))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" | 
					
						
						|  |  | 
					
						
						|  | assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images" | 
					
						
						|  |  | 
					
						
						|  | image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids] | 
					
						
						|  |  | 
					
						
						|  | def insert_separator(X, sep_list): | 
					
						
						|  | if len(X) > len(sep_list): | 
					
						
						|  | sep_list.append([]) | 
					
						
						|  | return [ele for sublist in zip(X, sep_list) for ele in sublist] | 
					
						
						|  | input_ids = [] | 
					
						
						|  | offset = 0 | 
					
						
						|  | for x in insert_separator(prompt_chunks, image_ids_pad): | 
					
						
						|  | input_ids.extend(x[offset:]) | 
					
						
						|  |  | 
					
						
						|  | input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) | 
					
						
						|  | attention_mask = (input_ids > -1000000).to(torch.long) | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data={"input_ids": input_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "pixel_values": images, | 
					
						
						|  | "image_sizes": image_sizes}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def batch_decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | 
					
						
						|  | refer to the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.batch_decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | 
					
						
						|  | the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def model_input_names(self): | 
					
						
						|  | tokenizer_input_names = self.tokenizer.model_input_names | 
					
						
						|  | image_processor_input_names = self.image_processor.model_input_names | 
					
						
						|  | return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |