Upload README.md with huggingface_hub
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            library_name: mlx-image
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - mlx
         | 
| 6 | 
            +
            - mlx-image
         | 
| 7 | 
            +
            - vision
         | 
| 8 | 
            +
            - image-classification
         | 
| 9 | 
            +
            datasets:
         | 
| 10 | 
            +
            - imagenet-1k
         | 
| 11 | 
            +
            ---
         | 
| 12 | 
            +
            # vit_small_patch8_224.dino
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model trained on ImageNet-1k dataset with [DINO](https://arxiv.org/abs/2104.14294).
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            The model was trained in self-supervised fashion on ImageNet-1k dataset. No classification head was trained, only the backbone.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            <div align="center">
         | 
| 21 | 
            +
              <img width="100%" alt="DINO illustration" src="dino.gif">
         | 
| 22 | 
            +
            </div>
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
| 25 | 
            +
            ## How to use
         | 
| 26 | 
            +
            ```bash
         | 
| 27 | 
            +
            pip install mlx-image
         | 
| 28 | 
            +
            ```
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            Here is how to use this model for image classification:
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            ```python
         | 
| 33 | 
            +
            from mlxim.model import create_model
         | 
| 34 | 
            +
            from mlxim.io import read_rgb
         | 
| 35 | 
            +
            from mlxim.transform import ImageNetTransform
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            transform = ImageNetTransform(train=False, img_size=224)
         | 
| 38 | 
            +
            x = transform(read_rgb("cat.png"))
         | 
| 39 | 
            +
            x = mx.expand_dims(x, 0)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            model = create_model("vit_small_patch8_224.dino")
         | 
| 42 | 
            +
            model.eval()
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            logits, attn_masks = model(x, attn_masks=True)
         | 
| 45 | 
            +
            ```
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            You can also use the embeds from layer before head:
         | 
| 48 | 
            +
            ```python
         | 
| 49 | 
            +
            from mlxim.model import create_model
         | 
| 50 | 
            +
            from mlxim.io import read_rgb
         | 
| 51 | 
            +
            from mlxim.transform import ImageNetTransform
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            transform = ImageNetTransform(train=False, img_size=512)
         | 
| 54 | 
            +
            x = transform(read_rgb("cat.png"))
         | 
| 55 | 
            +
            x = mx.expand_dims(x, 0)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            # first option
         | 
| 58 | 
            +
            model = create_model("vit_small_patch8_224.dino", num_classes=0)
         | 
| 59 | 
            +
            model.eval()
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            embeds = model(x)
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            # second option
         | 
| 64 | 
            +
            model = create_model("vit_small_patch8_224.dino")
         | 
| 65 | 
            +
            model.eval()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            embeds, attn_masks = model.get_features(x)
         | 
| 68 | 
            +
            ```
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ## Attention maps
         | 
| 71 | 
            +
            You can visualize the attention maps using the `attn_masks` returned by the model. Go check the mlx-image [notebook](https://github.com/riccardomusmeci/mlx-image/notebooks/dino_attention.ipynb).
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            <div align="center">
         | 
| 74 | 
            +
              <img width="100%" alt="Attention Map" src="attention_maps.png">
         | 
| 75 | 
            +
            </div>
         | 
| 76 | 
            +
             | 

