Update README.md
Browse files
README.md
CHANGED
|
@@ -1,81 +1,78 @@
|
|
| 1 |
-
---
|
| 2 |
-
{}
|
| 3 |
---
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
|
| 3 |
+
---
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- mlx
|
| 7 |
+
- mlx-image
|
| 8 |
+
- vision
|
| 9 |
+
- image-classification
|
| 10 |
+
datasets:
|
| 11 |
+
- imagenet-1k
|
| 12 |
+
library_name: mlx-image
|
| 13 |
+
---
|
| 14 |
+
# vit_small_patch8_224.dino
|
| 15 |
|
| 16 |
+
A [Vision Transformer](https://arxiv.org/abs/2010.11929v2) image classification model trained on ImageNet-1k dataset with [DINO](https://arxiv.org/abs/2104.14294).
|
| 17 |
|
| 18 |
+
The model was trained in self-supervised fashion on ImageNet-1k dataset. No classification head was trained, only the backbone.
|
| 19 |
|
| 20 |
+
Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
|
| 21 |
|
| 22 |
+
<div align="center">
|
| 23 |
+
<img width="100%" alt="DINO illustration" src="dino.gif">
|
| 24 |
+
</div>
|
| 25 |
|
| 26 |
|
| 27 |
+
## How to use
|
| 28 |
+
```bash
|
| 29 |
+
pip install mlx-image
|
| 30 |
+
```
|
| 31 |
|
| 32 |
+
Here is how to use this model for image classification:
|
| 33 |
|
| 34 |
+
```python
|
| 35 |
+
from mlxim.model import create_model
|
| 36 |
+
from mlxim.io import read_rgb
|
| 37 |
+
from mlxim.transform import ImageNetTransform
|
| 38 |
|
| 39 |
+
transform = ImageNetTransform(train=False, img_size=224)
|
| 40 |
+
x = transform(read_rgb("cat.png"))
|
| 41 |
+
x = mx.expand_dims(x, 0)
|
| 42 |
|
| 43 |
+
model = create_model("vit_small_patch8_224.dino")
|
| 44 |
+
model.eval()
|
| 45 |
|
| 46 |
+
logits, attn_masks = model(x, attn_masks=True)
|
| 47 |
+
```
|
| 48 |
|
| 49 |
+
You can also use the embeds from layer before head:
|
| 50 |
+
```python
|
| 51 |
+
from mlxim.model import create_model
|
| 52 |
+
from mlxim.io import read_rgb
|
| 53 |
+
from mlxim.transform import ImageNetTransform
|
| 54 |
|
| 55 |
+
transform = ImageNetTransform(train=False, img_size=512)
|
| 56 |
+
x = transform(read_rgb("cat.png"))
|
| 57 |
+
x = mx.expand_dims(x, 0)
|
| 58 |
|
| 59 |
+
# first option
|
| 60 |
+
model = create_model("vit_small_patch8_224.dino", num_classes=0)
|
| 61 |
+
model.eval()
|
| 62 |
|
| 63 |
+
embeds = model(x)
|
| 64 |
|
| 65 |
+
# second option
|
| 66 |
+
model = create_model("vit_small_patch8_224.dino")
|
| 67 |
+
model.eval()
|
| 68 |
|
| 69 |
+
embeds, attn_masks = model.get_features(x)
|
| 70 |
+
```
|
| 71 |
|
| 72 |
+
## Attention maps
|
| 73 |
+
You can visualize the attention maps using the `attn_masks` returned by the model. Go check the mlx-image [notebook](https://github.com/riccardomusmeci/mlx-image/blob/main/notebooks/dino_attention.ipynb).
|
| 74 |
|
| 75 |
+
<div align="center">
|
| 76 |
+
<img width="100%" alt="Attention Map" src="attention_maps.png">
|
| 77 |
+
</div>
|
| 78 |
|
|
|