Update README.md
Browse files
README.md
CHANGED
|
@@ -13,7 +13,8 @@ This model is an experimental model created by merging [mistralai/Mixtral-8x7B-I
|
|
| 13 |
|
| 14 |
# How we merged experts
|
| 15 |
We simply take the average of every two experts.weight.
|
| 16 |
-
The same goes for gate.weight.
|
|
|
|
| 17 |
|
| 18 |
# How To Convert
|
| 19 |
use colab cpu-high-memory.
|
|
@@ -34,26 +35,11 @@ model_name_or_path = "mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1"
|
|
| 34 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 35 |
model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
with torch.no_grad():
|
| 46 |
-
token_ids = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
| 47 |
-
output_ids = model.generate(
|
| 48 |
-
token_ids.to(model.device),
|
| 49 |
-
temperature=0.5,
|
| 50 |
-
do_sample=True,
|
| 51 |
-
top_p=0.95,
|
| 52 |
-
top_k=40,
|
| 53 |
-
max_new_tokens=128,
|
| 54 |
-
repetition_penalty=1.5
|
| 55 |
-
)
|
| 56 |
-
output = tokenizer.decode(output_ids[0][token_ids.size(1) :])
|
| 57 |
-
print(output)
|
| 58 |
-
|
| 59 |
-
~~~
|
|
|
|
| 13 |
|
| 14 |
# How we merged experts
|
| 15 |
We simply take the average of every two experts.weight.
|
| 16 |
+
The same goes for gate.weight.
|
| 17 |
+
**Unfortunately, this model has a large hallucination. Look extraction version. -> [mmnga/Mixtral-Extraction-4x7B-Instruct-v0.1](https://huggingface.co/mmnga/Mixtral-Extraction-4x7B-Instruct-v0.1)**
|
| 18 |
|
| 19 |
# How To Convert
|
| 20 |
use colab cpu-high-memory.
|
|
|
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
| 36 |
model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True)
|
| 37 |
|
| 38 |
+
text = "Tell me what's for dinner tonight. "
|
| 39 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 40 |
+
|
| 41 |
+
outputs = model.generate(**inputs, max_new_tokens=128)
|
| 42 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 43 |
+
|
| 44 |
+
~~~
|
| 45 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|