|
|
import transformers |
|
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
|
from transformers import ViTFeatureExtractor, ViTModel, ViTConfig |
|
|
from typing import List, Optional, Tuple, Union |
|
|
import warnings |
|
|
import ipdb |
|
|
import os |
|
|
import torch |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
from itertools import product |
|
|
import numpy as np |
|
|
import transformers.models.git.modeling_git as modeling_git |
|
|
import transformers.models.vit.modeling_vit as modeling_vit |
|
|
from transformers.models.opt.modeling_opt import OPTConfig |
|
|
import transformers.models.opt.modeling_opt as hg_opt |
|
|
import transformers.models.clip.modeling_clip as modeling_clip |
|
|
|
|
|
|
|
|
class GitForCausalLM(modeling_git.GitForCausalLM): |
|
|
def __init__(self, *args, **kwargs): |
|
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
del self.output |
|
|
self.output = nn.Linear( |
|
|
self.config.hidden_size, |
|
|
self.config.vocab_size, |
|
|
bias=False) |
|
|
self.post_init() |
|
|
|
|
|
del self.git.image_encoder |
|
|
self.git.image_encoder = ViTModel.from_pretrained('facebook/dino-vitb16') |
|
|
dino_cfg = self.git.image_encoder.config |
|
|
config = self.git.config |
|
|
config.vision_config.hidden_size = dino_cfg.hidden_size |
|
|
|
|
|
del self.git.visual_projection |
|
|
self.git.visual_projection = modeling_git.GitProjection(config) |
|
|
num_tks = (dino_cfg.image_size // dino_cfg.patch_size) ** 2 + 1 |
|
|
self.git.encoder.layer[0].attention.self.image_patch_tokens = num_tks |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.Tensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.Tensor] = None, |
|
|
pixel_values: Optional[torch.Tensor] = None, |
|
|
head_mask: Optional[torch.Tensor] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
labels: Optional[torch.Tensor] = None, |
|
|
past_key_values: Optional[List[torch.Tensor]] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple[torch.Tensor], modeling_git.CausalLMOutputWithPast]: |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
if labels is not None: |
|
|
use_cache = False |
|
|
|
|
|
outputs = self.git( |
|
|
input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
pixel_values=pixel_values, |
|
|
head_mask=head_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
|
|
|
sequence_output = outputs[0] |
|
|
logits = self.output(sequence_output) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
if pixel_values is not None: |
|
|
num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens |
|
|
else: |
|
|
num_image_tokens = 0 |
|
|
shifted_logits = logits[:, num_image_tokens:-1, :].contiguous() |
|
|
labels = labels[:, 1:].contiguous() |
|
|
loss_fct = CrossEntropyLoss() |
|
|
loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1)) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
|
|
return modeling_git.CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|