Commit 
							
							·
						
						2abf116
	
1
								Parent(s):
							
							2d1dde9
								
LLM-foundry update June 27, 2023 21:25:19 (#4)
Browse files- LLM-foundry update June 27, 2023 21:25:19 (2443a6bcb624ea3dec72a71af64c98fb68d0e359)
Co-authored-by: Dan Biderman <[email protected]>
- modeling_mpt.py +7 -2
- norm.py +1 -1
    	
        modeling_mpt.py
    CHANGED
    
    | @@ -140,7 +140,7 @@ class MPTModel(MPTPreTrainedModel): | |
| 140 | 
             
                    attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 141 | 
             
                    return attn_bias
         | 
| 142 |  | 
| 143 | 
            -
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
         | 
| 144 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 145 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 146 | 
             
                    if attention_mask is not None:
         | 
| @@ -156,6 +156,8 @@ class MPTModel(MPTPreTrainedModel): | |
| 156 | 
             
                        raise NotImplementedError('MPT does not support training with left padding.')
         | 
| 157 | 
             
                    if self.prefix_lm and prefix_mask is None:
         | 
| 158 | 
             
                        raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
         | 
|  | |
|  | |
| 159 | 
             
                    if self.training:
         | 
| 160 | 
             
                        if self.attn_uses_sequence_id and sequence_id is None:
         | 
| 161 | 
             
                            raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
         | 
| @@ -225,6 +227,7 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 225 | 
             
                    super().__init__(config)
         | 
| 226 | 
             
                    if not config.tie_word_embeddings:
         | 
| 227 | 
             
                        raise ValueError('MPTForCausalLM only supports tied word embeddings')
         | 
|  | |
| 228 | 
             
                    self.transformer = MPTModel(config)
         | 
| 229 | 
             
                    for child in self.transformer.children():
         | 
| 230 | 
             
                        if isinstance(child, torch.nn.ModuleList):
         | 
| @@ -259,9 +262,11 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 259 | 
             
                def get_decoder(self):
         | 
| 260 | 
             
                    return self.transformer
         | 
| 261 |  | 
| 262 | 
            -
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
         | 
| 263 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 264 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
|  | |
|  | |
| 265 | 
             
                    outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
         | 
| 266 | 
             
                    logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
         | 
| 267 | 
             
                    if self.logit_scale is not None:
         | 
|  | |
| 140 | 
             
                    attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 141 | 
             
                    return attn_bias
         | 
| 142 |  | 
| 143 | 
            +
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
         | 
| 144 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 145 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 146 | 
             
                    if attention_mask is not None:
         | 
|  | |
| 156 | 
             
                        raise NotImplementedError('MPT does not support training with left padding.')
         | 
| 157 | 
             
                    if self.prefix_lm and prefix_mask is None:
         | 
| 158 | 
             
                        raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
         | 
| 159 | 
            +
                    if inputs_embeds is not None:
         | 
| 160 | 
            +
                        raise NotImplementedError('inputs_embeds is not implemented for MPT.')
         | 
| 161 | 
             
                    if self.training:
         | 
| 162 | 
             
                        if self.attn_uses_sequence_id and sequence_id is None:
         | 
| 163 | 
             
                            raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
         | 
|  | |
| 227 | 
             
                    super().__init__(config)
         | 
| 228 | 
             
                    if not config.tie_word_embeddings:
         | 
| 229 | 
             
                        raise ValueError('MPTForCausalLM only supports tied word embeddings')
         | 
| 230 | 
            +
                    print(f'Instantiating an MPTForCausalLM model from {__file__}')
         | 
| 231 | 
             
                    self.transformer = MPTModel(config)
         | 
| 232 | 
             
                    for child in self.transformer.children():
         | 
| 233 | 
             
                        if isinstance(child, torch.nn.ModuleList):
         | 
|  | |
| 262 | 
             
                def get_decoder(self):
         | 
| 263 | 
             
                    return self.transformer
         | 
| 264 |  | 
| 265 | 
            +
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
         | 
| 266 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 267 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 268 | 
            +
                    if inputs_embeds is not None:
         | 
| 269 | 
            +
                        raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
         | 
| 270 | 
             
                    outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
         | 
| 271 | 
             
                    logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
         | 
| 272 | 
             
                    if self.logit_scale is not None:
         | 
    	
        norm.py
    CHANGED
    
    | @@ -25,7 +25,7 @@ class LPLayerNorm(torch.nn.LayerNorm): | |
| 25 | 
             
                        return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
         | 
| 26 |  | 
| 27 | 
             
            def rms_norm(x, weight=None, eps=1e-05):
         | 
| 28 | 
            -
                output = x  | 
| 29 | 
             
                if weight is not None:
         | 
| 30 | 
             
                    return output * weight
         | 
| 31 | 
             
                return output
         | 
|  | |
| 25 | 
             
                        return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
         | 
| 26 |  | 
| 27 | 
             
            def rms_norm(x, weight=None, eps=1e-05):
         | 
| 28 | 
            +
                output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
         | 
| 29 | 
             
                if weight is not None:
         | 
| 30 | 
             
                    return output * weight
         | 
| 31 | 
             
                return output
         | 

